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SUMMARY

People routinely hear and understand speech at
rates of 120–200 words per minute [1, 2]. Thus,
speech comprehension must involve rapid, online
neural mechanisms that process words’ meanings
in an approximately time-locked fashion. However,
electrophysiological evidence for such time-locked
processing has been lacking for continuous speech.
Although valuable insights into semantic processing
have been provided by the ‘‘N400 component’’ of the
event-related potential [3–6], this literature has been
dominated by paradigms using incongruous words
within specially constructed sentences, with less
emphasis on natural, narrative speech comprehen-
sion. Building on the discovery that cortical activity
‘‘tracks’’ the dynamics of running speech [7–9] and
psycholinguistic work demonstrating [10–12] and
modeling [13–15] how context impacts on word pro-
cessing, we describe a new approach for deriving an
electrophysiological correlate of natural speech
comprehension. We used a computational model
[16] to quantify the meaning carried by words based
on how semantically dissimilar they were to their pre-
ceding context and then regressed this measure
against electroencephalographic (EEG) data re-
corded from subjects as they listened to narrative
speech. This produced a prominent negativity at a
time lag of 200–600 ms on centro-parietal EEG chan-
nels, characteristics common to the N400. Applying
this approach to EEG datasets involving time-
reversed speech, cocktail party attention, and
audiovisual speech-in-noise demonstrated that this
response was very sensitive to whether or not
subjects understood the speech they heard. These
findings demonstrate that, when successfully com-
prehending natural speech, the human brain re-
sponds to the contextual semantic content of each
word in a relatively time-locked fashion.

RESULTS

Electroencephalographic (EEG) data were recorded from sub-

jects as they listened to narrative speech in the form of audio-

book recordings. Importantly, and as detailed below, almost all

of the data we present were acquired as part of previously pub-

lished studies and not with the goal of studying semantic pro-

cessing. To relate the neural data to the semantic processing

of this speech, we first wished to parameterize the speech stimuli

such that individual words were quantified according to their se-

mantic context. There are many ways to do this. Inspired by the

brain’s sensitivity to incongruous newwords (as seen in the N400

[3–6]), we chose to do it based on quantifying how ‘‘semantically

dissimilar’’ each newwordwas compared to its immediately pre-

ceding context. This idea of semantic distance has previously

been used in studies of reading-time effects [15], reading

comprehension [17], and brain imaging of speech processing

[17]. Our specific approach was based on the well-known

word2vec model [16], whereby each word in a speech stimulus

is converted to a high-dimensional vector (in our case 400 di-

mensions, which was a somewhat arbitrary choice; see STAR

Methods). The idea is that words that share common contexts

(i.e., co-occur) in a very large corpus of text are converted to vec-

tors that are located in close proximity to one another in this high-

dimensional space. As such, although it is more a measure of

local word context and not a direct measure of semantics per

se, the vector associated with each word can be used as a proxy

for the word’s meaning. We then defined the ‘‘semantic dissim-

ilarity’’ of each specific content word by comparing (via a Pear-

son’s correlation) its 400-dimensional vector with the average

of the vectors corresponding to all the preceding words in

that particular sentence—word combination by averaging has

proved practically effective in previous research [18, 19]—and

then subtracting that correlation from 1. Where a specific word
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Figure 1. Regularized Regression Analysis for Estimating an Electrophysiological Correlate of Semantic Dissimilarity to Natural Speech

Content words from an audiobook are converted to 400-dimensional vectors using theword2vec algorithm [20] (bottom left). The semantic similarity of eachword

to its preceding context is then defined by comparing (via a Pearson’s correlation) its 400-dimensional vector with the average of the vectors of all the preceding

words in the corresponding sentence. And the ‘‘semantic dissimilarity’’ of the word is quantified as 1 minus this correlation (bottom middle left). A vector at the

same sampling rate as the recorded neural data is then created that consists of time-aligned impulses at the onset of each word that are scaled according to the

value of that word’s semantic dissimilarity. The ongoing EEG data are then regressed against this vector to obtain a so-called temporal response function (TRF;

right) that describes via beta weights how fluctuations in semantic dissimilarity across words impact upon the EEG at various time lags [21].
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was the first word in a sentence, we compared it to the average

of all word vectors in the previous sentence and again subtracted

the correlation from 1. This produced a single semantic dissimi-

larity measure for each word that acts as a representation of the

meaning added to a sentence by that word (technically, this

could take any value between 0 and 2, but it tended to be in

the range 0.53–1.06). We then created a vector at the same sam-

pling rate as our EEG data (128 Hz), which consisted of time-

aligned impulses at the onset of each word that were scaled ac-

cording to the value of that word’s semantic dissimilarity. Then,

by linearly regressing the low-frequency (1–8 Hz) EEG against

this vector, we derived a so-called temporal response function

(TRF) [20] that describes how these fluctuations in semantic

dissimilarity across consecutive words impact upon the neural

activity at various time lags (see Figure 1).

A Neural Correlate of Semantic Dissimilarity in Natural
Speech
A TRF averaged over 19 subjects who each listened to �60 min

of an audiobook is shown in Figures 2A and 2B. A prominent

negativity is apparent over midline parietal scalp at time lags

between 200 and 500 ms (Figure 2A). Over this time range,

this negativity was significantly less than zero across subjects

at several parietal scalp electrode sites (Figure 2B; running

one-tailed t test, p < 0.05, false discovery rate [FDR] corrected).

To confirm that this negativity was related to the semantic con-

tent of the speech and not just the stimulus acoustics, we

repeated the analysis using another dataset from ten subjects

who listened to the same audiobook, but in a time-reversed

fashion [21]. Carrying out the same steps as before (while tak-

ing into account the time-reversed nature of the stimuli) pro-
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duced TRF responses that showed no evidence of the promi-

nent, late negativity (Figures 2A and 2B; running one-tailed

t test, p > 0.05, FDR corrected). The presence and absence

of this negativity for forward and time-reversed speech, respec-

tively, was evident for several individual subjects who under-

took both experiments (Figure 2C). These results demonstrate

that electrophysiological responses to natural speech, in the

form of a late, parietal negativity, reflect the semantic dissimi-

larity of individual words to their preceding context in a rela-

tively tightly time-locked fashion.

The TRF analysis is based on a linear regression between the

stimulus feature (i.e., semantic dissimilarity) and the EEG

response. We wished to determine how reasonable this linear

assumptionwas or whether, in fact, our TRF negativity was being

driven primarily by occasional ‘‘incongruent’’ words with large

semantic dissimilarity values. To do this, we divided the seman-

tic dissimilarity impulses into four quartiles based on their magni-

tude. We then created four separate regressors corresponding

to each of these subsets of impulses, where the impulses within

each subset were rescaled to have unit height. The amplitude of

the late negativity in the TRFs for these four quartiles showed a

monotonic increase with measure of semantic dissimilarity

(Figure S1).

Neural Signatures of Semantic Dissimilarity Depend on
Intelligibility
The experiments above involved either completely intelligible or

completely unintelligible stimuli. To assess how sensitive our se-

mantic dissimilarity TRF might be to gradations of intelligibility,

we reanalyzed data from another experiment involving speech-

in-noise [22]. Specifically, we analyzed EEG data from 21



Figure 2. Temporal Response Functions for Natural and Time-Reversed Speech

(A) Topographic maps of the semantic dissimilarity TRF averaged over all trials and all subjects for natural, forward speech (top) display a marked centro-parietal

negativity between �200 and 480 ms. There is no evidence of a similar negativity in the average TRF for time-reversed speech (bottom). Further tests on the

assumption of linearity in the TRF model were conducted and shown in Figure S1.

(B) Grand average TRF waveforms at selected individual channels show the time course of the negativity related to semantic dissimilarity. Thick lines indicate a

response that is statistically less than zero across subjects (p < 0.05, t test, FDR corrected). Black lines below the waveforms indicate that the TRFs for forward

speech are statistically more negative than those for time-reversed speech across subjects (p < 0.05, t test, FDR corrected).

(C) Topographic maps of TRFs averaged over the interval 200–500 ms for selected subjects who took part in both the forward and time-reversed speech ex-

periments. For all four subjects, a negativity is apparent for forward speech (albeit with slightly different distributions for each subject) that is absent for time-

reversed speech. A further study relating this new measure to ‘‘the classic N400’’ is shown in Figure S2.
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subjects who listened to two repetitions each of fifteen 60 s

segments of continuous audio speech which were always mixed

with spectrally matched stationary noise at a signal-to-noise ra-

tio of�9 dB. Based on thewell-known fact that visual speech en-

hances the intelligibility of speech-in-noise [23], we manipulated

intelligibility by allowing subjects to watch a video of the speaker

for one of these repetitions. And although the audio-only speech

was not completely unintelligible, the presence of the video led

to a large, significant improvement in intelligibility as measured

by both self-report (p = 4 3 10�5, Wilcoxon signed-rank test)

and a word-detection task (p = 7.9 3 10�5, Wilcoxon signed-

rank test). This behavioral effect wasmirrored by a significant dif-

ference in the semantic dissimilarity TRFs between audio-only

and audiovisual conditions (Figures 3A and 3B). This difference

was most pronounced at time lags between 380 and 600 ms,

where it showed an effect size of d’ = 0.55. Notably, this was sub-

stantially later than the interval for the TRF negativity during clean

speech (Figure 2), a fact that may have to do with the increasing
difficulty of processing speech under noisy conditions (see

[6, 25]). Another way to quantify how intelligibility affects brain

activity is to assess how well our semantic dissimilarity TRFs

can predict unseen EEG responses to natural speech. This

kind of forward-encoding model-based approach has previously

been used for predicting EEG responses based on envelope and

phonetic representations of speech [21], as well as fMRI activa-

tions based directly on semantic speech vectors [26, 27] and

semantic distance [17]. Using cross-validation to fit and test a

semantic dissimilarity TRF produced a significantly better EEG

prediction for audiovisual speech than audio speech on midline

parietal electrode channels (Figure 3C; p = 0.01, Wilcoxon

signed-rank test). And although the EEG predictions based on

audio speech were significantly greater than zero—after all, the

audio-alone speech was not completely unintelligible (and see

[25])—the effect size of adding the visual input on these EEG

predictions scores was large (d’ = 0.84 on midline parietal

electrode Pz). Overall, this demonstrates that our semantic
Current Biology 28, 1–7, March 5, 2018 3



Figure 3. Assessing the Effect of Comprehension on the Electrophysiological Index of Semantic Dissimilarity

(A) Topographic maps of the semantic dissimilarity TRF averaged over all trials and all subjects for audiovisual speech in �9 dB of acoustic background noise

display a centro-parietal negativity between�400 and 600 ms. This negativity is significantly reduced in the average TRF for audio-only speech in the same level

of background noise, which was much less intelligible.

(B) Grand-average TRFwaveforms for audiovisual and audio-only speech over two selectedmidline electrodes. Thick lines indicate a response that is statistically

less than zero across subjects (p < 0.05, running t test, FDR corrected). Black lines below the waveforms indicate that the TRFs for audiovisual speech are

statistically more negative than those for audio-only speech across subjects (p < 0.05, running t test, FDR corrected).

(C) A cross-validation procedure was used to predict EEG responses to natural speech using a semantic dissimilarity TRF trained on other data. EEG prediction

accuracy for audiovisual speech was significantly greater than that for audio-only speech (p < 0.01, t test).

(D) Across subjects, the amplitude of the semantic dissimilarity TRF overmidline parietal scalp was significantly correlatedwith self-reported intelligibility rating of

audiovisual speech (p < 0.02, Pearson’s correlation).

(E) Topographicmaps of the semantic dissimilarity TRF averaged over all trials and all subjects for attended speech in a dichotic cocktail party paradigm display a

centro-parietal negativity between �300 and 600 ms. This negativity is not apparent in the average TRF for unattended speech.

(F) Grand average TRF waveforms for attended and unattended speech over two selected midline electrodes. Thick lines indicate a response that is statistically

less than zero across subjects (p < 0.05, running t test, FDR corrected). Black lines below the waveforms indicate that the TRFs for attended speech are sta-

tistically more negative than those for unattended speech across subjects (p < 0.05, running t test, FDR corrected).

(G) A cross-validation procedure was used to predict EEG responses to natural speech using a semantic dissimilarity TRF trained on other data. EEG prediction

accuracy for attended speech was significantly greater than that for unattended speech (p < 1 3 10�6, t test).

(H) Across subjects, the latency of the peak in the global field power (GFP) [24] of the semantic dissimilarity TRF was significantly negatively correlated with the

number of questions answered correctly on the attended speech (p < 5 3 10�5, Pearson’s correlation).
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dissimilarity TRF is sensitive to variations in the intelligibility of

acoustically identical speech. Moreover, in the audiovisual

speech condition, there was a significant negative correlation

across subjects between the self-reported intelligibility ratings

(which varied broadly) and the amplitude of the TRF negativity

averaged over the interval 250–500 ms (Figure 3D; the more

intelligible, the larger the negativity; r = �0.5, p < 0.02).
4 Current Biology 28, 1–7, March 5, 2018
No Evidence of Contextual Semantic Processing for
Unattended Speech
Over 60 years ago, it was first noted that, when attending to one

of two dichotically presented speech streams, people have a

very limited ability to report on the content of the speech in the

unattended ear [28], a phenomenon known as the cocktail party

effect. Ever since then, researchers have sought to explain this
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phenomenon in terms of psychological models [29–31] and

neurophysiological data [32–35]. Despite these efforts, the

extent to which unattended speech is semantically processed

by the brain remains unclear [24, 36]. However, given the very

marked limitations in the ability of subjects to report on the con-

tent of unattended speech, we hypothesized that the negativity

in our TRF, as an index of contextual semantic processing,

should be markedly reduced in unattended speech.

We reanalyzed EEG recorded from 33 subjects who attended

to one of two concurrently and dichotically presented audio-

books (17 subjects attended to one story and 16 to the other)

[33, 37]. The experiment was paused after every�60 s, and sub-

jects were asked multiple-choice questions on both stories. We

derived semantic dissimilarity regressors for each of the two stor-

ies, and then regressed the EEG data against these vectors to

produce two TRFs—one for the attended story and one for the

unattended story. Consistent with previous studies, the behav-

ioral effect of attention was very strong (80% correct answers

for the attended story and29%for the unattended story—chance

was 25%). Mirroring this large behavioral effect, the TRF corre-

sponding to the attended story showed a clear and prominent

negativity over midline parietal scalp that was significantly larger

than the corresponding TRF for the unattended speech, again at

a rather long latency of 380–600 ms (Figures 3E and 3F; paired

t test, p = 9.3 3 10�8; effect size d’ = 2.0). Although this does

not entirely rule out some level of semantic processing in unat-

tended speech—after all, our regressors are basedononepartic-

ular computational measure of linguistic processing—it does

present strong evidence of a pronounced reduction in the pro-

cessing of unattended words relative to their context. Once

more, using cross-validation to fit and test a semantic dissimi-

larity TRF produced a significantly better EEG prediction for

the attended speech than the unattended speech (Figure 3G;

p = 9.36 3 10�7, Wilcoxon signed-rank test). And while the EEG

predictions based on unattended speech were significantly

greater than zero—possibly as a result of weak correlations be-

tween the semantic dissimilarity impulses and acoustic energy

changes at word onsets—the effect size of attention on these

EEG prediction scores was as large as that on the TRFs them-

selves (d’ = 2.0 at electrode Pz). Unlike for the audiovisual

speech-in-noise experiment above, we found no relationship be-

tween the amplitude of the TRF andperformance on the attended

questions. This was unsurprising given that the to-be-attended

speech stream was always intelligible. Instead, we found that

thepeak latency of the TRFnegativitywas significantly negatively

correlated with performance on the questions across subjects

(r =�0.7, p = 1.953 10�5). In other words, the earlier a subject’s

TRFpeak, the better that subject did on the task.We interpret this

as evidence that peoplewho can successfully sustain their atten-

tion and/or suppress distracting information can more efficiently

process the behaviorally relevant speech—or vice versa. This

notion of more efficient semantic processing of words in their

recent historical context aligns with the well-known link between

working memory and cocktail party attention performance [38].

On the Relationship of the Semantic Dissimilarity TRF
Negativity to the N400 Component
The dominant feature of our semantic dissimilarity TRF is a

negativity over centro-parietal scalp, a feature shared by the
EEG measure that has most strongly been linked with semantic

processing—the N400 component. Although this correspon-

dence is not terribly surprising given that the derivation of our

semantic dissimilarity measure was motivated by the fact that

the N400 is elicited by words that are semantically incongruent

with their context, we have refrained from referring to our

response as being the classic N400. The reason for this is

that the specific assumptions about semantic dissimilarity

that underlie our TRF analysis are not precisely the same as

the differences in predictability (cloze probability [39]) that drive

the development of most N400 stimuli [4]. As such, although it

is possible that our approach is simply another way to derive

the classic N400, it is also possible that the two measures

may reflect at least partially dissociable processes. As a first

attempt to examine the relationship between the two responses

more directly, we recorded EEGs from nine subjects who un-

dertook a classic N400 experiment and who listened to the

audiobook used in our first-mentioned experiment above. For

the N400 experiment, subjects read 300 sentences presented

word by word on a screen, half of which ended with a word

that was congruent with the rest of the sentence and half which

ended with an incongruent word. N400s were then determined

by subtracting the event-related potential to the congruent

words from that to the incongruent words. And, using the

EEG data recorded during the story, we derived a semantic

dissimilarity TRF for each subject as before. The two responses

displayed somewhat similar time courses over midline parietal

scalp (although the TRF peaked significantly earlier than the

N400; p = 0.012; Figure S2), as well as similar topographical

distributions at 375–425 ms. The peak amplitude of the N400

component was also significantly correlated with the peak

amplitude of the semantic dissimilarity TRF across the nine

subjects (r = 0.751, p = 0.02; Figure S2).

DISCUSSION

We have shown that when listening to natural speech, the

ongoing dynamics of cortical activity reflect the semantic pro-

cessing of words in context in a rapid, time-locked fashion.

And we have shown that indices of this processing are robustly

affected by whether subjects understand the speech they hear

and whether they are paying attention to that speech. This

approach adds an extra dimension to research on the neural

tracking of natural speech dynamics by directly linking a new

component of that tracking to the contextual semantic process-

ing of speech. Further work will be necessary to more fully

characterize this online semantic processing. This will include

investigating whether other types of language knowledge

contribute to our measures [17], assessing whether unattended

speech is processed at a semantic level that depends less

upon context than our dissimilarity measure, and modeling se-

mantic representation using more neurobiologically motivated

approaches [40] rather than just word co-occurrence. By incor-

porating other computational models into the framework we

have outlined, we would expect that EEG, electrocorticography

(ECoG), and magnetoencephalography (MEG) could be very

useful in answering these questions.

Gaining deeper insights on these issues will also be helped by

optimizing our analysis. For example, it is likely that generating
Current Biology 28, 1–7, March 5, 2018 5



Please cite this article in press as: Broderick et al., Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of Natural,
Narrative Speech, Current Biology (2018), https://doi.org/10.1016/j.cub.2018.01.080
regressors by aligning impulses to word onsets, as we have

done, is suboptimal. This is because the time taken to semanti-

cally process different words necessarily depends on the words

themselves, their context, and listening conditions. That said, the

assumption underlying our analysis is that for the successful

comprehension of natural speech to be possible at all, meaning

must typically be extracted in a relatively online manner—

otherwise, we would constantly lose track of what we are

hearing. And this assumption appears to be borne out by

existence of the robust TRFs we observe. We hope that the

framework we have introduced here will allow researchers to

estimate more optimal locations for the regressor events and/or

regressor events other than impulses. For example, it may be

possible to use a ‘‘reverse’’ approach to discover such optimal

regressors [41].

It will also be important to more fully examine the relationship

between our TRF and the N400. It is entirely possible that they

are effectively functionally equivalent. That said, although the

amplitude correlations between the two measures were signifi-

cant, they were decidedly imperfect, and their peak latencies

also differed significantly. Now these differences may be due

to the simple fact that the TRF was derived using audio speech,

whereas the N400 was elicited using reading. But it also remains

possible that the differing assumptions used in producing each

measure mean they are reflecting different sub-processes

involved in semantic understanding. Future work is needed to

answer this question. This includes efforts to determine what

sub-processes the TRF negativity represents, similar to efforts

involving the N400 [42, 43]. Either way, it remains the case that

our study has introduced a novel framework for extracting EEG

responses that reflect the semantic processing of natural,

running speech. This framework could be useful in a broad range

of basic, applied, and clinical research studies.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All subjects were native English speakers, and reported normal hearing, normal or corrected-to-normal vision, and no history of

neurological disease. 19 subjects (13 male) aged between 19 and 38 years participated in the first experiment involving listening

to a single audiobook. Of these 19 subjects, 9 also participated in the N400 experiment. Ten subjects (7 male) aged between 21

and 32 years participated in the experiment involving the time-reversed audiobook (5 of these subjects participated in the first exper-

iment above). 34 subjects (28 male) with a mean age of 27.3 ± 3.2 (SD) years participated in the cocktail party attention experiment,

but data from one subject was not included in the analysis as the recordings from their mastoid electrodes were of poor quality.

21 subjects (6 female) aged between 21 and 35 years participated in the multisensory speech experiment. Much of the data from

these experiments has previously been published in studies examining how EEG tracks the envelope and phonetic content of speech

[21, 22, 32, 37]. All procedures were undertaken in accordance with the Declaration of Helsinki and were approved by the Ethics

Committees of the School of Psychology at Trinity College Dublin, and the Health Sciences Faculty at Trinity College Dublin.

METHOD DETAILS

Data Acquisition and Pre-processing
For all experiments, 128-channel EEG data (plus twomastoid channels) were acquired at a rate of 512 Hz using an ActiveTwo system

(BioSemi). Triggers indicating the start of each trial were sent by the stimulus presentation computer and included in the EEG record-

ings to ensure synchronization. Offline, the data were band-pass filtered between 1 and 8 Hz, downsampled to 128 Hz, and re-refer-

enced to the average of the mastoid channels in MATLAB. To identify channels with excessive noise, the time series were visually

inspected and the SD of each channel was compared with that of the surrounding channels. Channels contaminated by noise

were recalculated by spline interpolating the surrounding clean channels in EEGLAB [44].

Stimuli and Procedures
In the first experiment, subjects undertook 20 trials, each of the same length (just under 180 s), where they were presented with a

professional audio-book version of a popular mid-20th century American work of fiction written in an economical and understated

style and read by a single male American speaker. The trials preserved the storyline, with neither repetitions nor discontinuities.

The average speech rate was �210 words/min. Similarly, the second experiment involved the presentation of the same trials in

the same order, but with each of the 28 speech segments played in reverse. All stimuli were presented monophonically at a

sampling rate of 44.1 kHz using Sennheiser HD650 headphones and Presentation software from Neurobehavioral Systems
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(http://www.neurobs.com). Testing was carried out in a dark, sound-attenuated room and subjects were instructed tomaintain visual

fixation on a crosshair centered on the screen for the duration of each trial, and to minimize eye blinking and all other motor activities.

Data from 10 of the subjects (aged 23–38 years; 7 male) who participated in the first experiment and all of the subjects (aged 21–32

years; 7 male) who participated in the second experiment have been published previously [21]. Data from an additional 9 subjects

(aged 19–32 years, 6 male) for the first experiment were collected for the current study.

In the N400 experiment, subjects read 300 sentences presented word-by-word on a screen, half of which ended with a word that

was congruent (high cloze probability) with the rest of the sentence and half which ended with an incongruent (low cloze probability)

word. N400s were then determined by subtracting the event-related potential to the congruent words from that to the incongruent

words. And, using the EEG data recorded during the story, we derived a semantic dissimilarity TRF for each subject as before.

In the cocktail party experiment, 33 subjects (aged 23–38 years; 27 male) undertook 30 trials, each of 60 s in length, where they

were presented with 2 classic works of fiction: one to the left ear, and the other to the right ear. Each story was read by a different

male speaker. Subjects were divided into 2 groups of 17 and 16 (+1 excluded subject) with each group instructed to attend to the

story in either the left or right ear throughout the entire 30 trials. After each trial, subjects were required to answer between 4 and

6 multiple-choice questions on both stories. Each question had 4 possible answers. We used a between-subjects design as we

wanted each subject to follow just one story to make the experiment as natural as possible and because we wished to avoid any

repeated presentation of stimuli. For both stories, each trial began where the story ended on the previous trial. Stimulus amplitudes

in each audio stream within each trial were normalized to have the same root mean squared (RMS) intensity. In order to minimize the

possibility of the unattended stream capturing the subjects’ attention during silent periods in the attended stream, silent gaps

exceeding 0.5 s were truncated to 0.5 s in duration. Stimuli were presented using Sennheiser HD650 headphones and Presentation

software from Neurobehavioral Systems (http://www.neurobs.com). Subjects were instructed to maintain visual fixation on a cross-

hair centered on the screen for the duration of each trial, and to minimize eye blinking and all other motor activities. The data from all

subjects in this experiment have been published previously [33, 37].

For themultisensory experiment, the stimuli were drawn from a set of videos that consisted of amale speaking American English in

a conversational-like manner. Fifteen 60 s videos were rendered into 12803 720-pixel movies at 30 frames/s and exported in audio-

only (A), visual-only (V), and AV format in VideoPad Video Editor (NCH Software). The soundtracks were sampled at 48 kHz, under-

went dynamic range compression, andwerematched in RMS intensity (see [45]), and weremixed with spectrally-matched stationary

noise to ensure consistent masking across stimuli [25, 46]. The noise stimuli were generated in MATLAB (The MathWorks) using a

50th-order forward linear predictive model estimated from the original speech recording. Prediction order was calculated based

on the sampling rate of the soundtracks [47]. The data analyzed here were from the A and AV condition only. Please note, the pre-

sentation order of A, and AV repetitions was randomized across the 15 videos and across subjects. The data from all 21 subjects

(aged 21–35 years; 13 male) in this experiment have been published previously [22].

Computational Model and Regression
Semantic vectors for content words were derived using the state-of-the-art word2vec algorithm [16]. The ‘‘continuous bag of words’’

implementation built in [48] was selected because this was trained on British English corpora (ukWaC, the English Wikipedia and the

British National Corpus combined) which is both large and probably more reflective of the language exposure of the participants

(in Dublin) than US corpora. In addition, word vectors are freely downloadable (see [48]). Word2vec embodies the ‘‘distributional hy-

pothesis’’ that words with similar meaning occur in similar contexts in an artificial neural network approach. Practically, the approach

involves sliding a fixed window of words (11 in this case, however this is a parameter set by the experimenter) over a text corpus and

training a neural network to predict the word in the center of that window. Word identity (as opposed to semantics) is uniquely en-

coded as a single bit set to one in a long vector of zeros (vector length is the number of words in the vocabulary). These long vectors

form the basis of the input and output to the neural network. The input corresponds to the sum of the 10 word vectors in the window,

the output is the central word. Because word order is lost in this summation, the input is analogous to an unordered bag of words. The

network contains an internal hidden layer of 400 dimensions. The hidden layer is fully connected to the input and output. It is in fact the

weights on the connections between the input and hidden layer that are ultimately harvested to form the semantic model (the weights

are a number-of-words in the vocabulary by 400 floating point matrix) and the remainder of the network is discarded. Weights are

initially set as random, but are subsequently optimized so as to reduce error between predicted and target output. Intuitively, because

words that frequently appear together in the same context window also predict similar central words, weights on these words are

tuned to similar internal representations reflecting common contexts. For more details on the training procedure see [48] and [16]

(note, the choice of 400 dimensions for the internal layer was arbitrary and, as described in the next paragraph, these 400-dimen-

sional vectors are reduced to a single correlation measure).

Having obtained a vector for each word, we then quantified how semantically dissimilar each particular word was to the preceding

words in the corresponding sentence. We did this by calculating a Pearson’s correlation between the word’s 400-dimensional vector

and the average of the vectors corresponding to all the preceding words in that particular sentence, and subtracting this correlation

from 1 (where a specific word was the first word in a sentence, we calculated the correlation between the word and the average of all

word vectors in the previous sentence, before, again, subtracting that correlation from 1). It should be noted that, this kind of simple

feature-wise averaging/summation of word-level semantic vectors has proven to be an effective and enduring method of modeling

semantic composition in computational linguistics (e.g., [18, 19]). It has also been proven to be a successful method for predicting

fMRI activation patterns associated with sentences’ meanings (e.g., [40]). However, it should also be noted that the approach is a
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gross oversimplification of the complexities of semantic composition in the brain (and does not take into account the effects of word

order or syntax – see discussion [40]). In any case, our approach produced a single semantic dissimilarity measure for each wordwith

a value between 0 and 2.We then created a ‘‘semantic dissimilarity vector’’ at the same sampling rate as our EEG data (128 Hz) which

consisted of time-aligned impulses at the onset of each word that were scaled according to the value of that word’s semantic dissim-

ilarity. The word onset times were determined by performing forced alignment of the speech files and the corresponding textual

orthographical transcription using the Prosodylab-Aligner, which has been shown to produce alignments with median precision

(misalignment) on the order of 10 ms [49].

A system identification technique was used to compute a channel-specific mapping between the semantic dissimilarity vector and

the recorded EEG data, commonly referred to as a temporal response function (TRF). A TRF can be interpreted as a filter that de-

scribes the brain’s linear transformation of a stimulus feature, S(t), to the continuous neural response, R(t), over a series of specified

time lags: R(t) = TRF*S(t), where ‘*’ represents the convolution operator. Specifically, estimation of the TRF weights was performed

using regularized linear regression, wherein a regularization (ridge) parameter was tuned to control overfitting (see [20] for a detailed

description of this step).

In previouswork, we have attempted to cast our TRF functionswith mV as their unit of measure. However, this relies on a decision to

normalize the input stimulus values between some limits and, as such, has been somewhat arbitrary. In the present work, and in line

with previous work from other groups, the EEG data on each channel was z-scored prior to estimating the TRF, meaning that the

TRFs are ultimately presented in arbitrary units. The colors in the TRF topographic plots can be interpreted as follows: red at a partic-

ular latency indicates that, at that poststimulus lag, the EEG voltage is driven in a positive direction by a unit change in semantic

dissimilarity; blue means the EEG voltage at that poststimulus lag is driven negative by a similar change. Thus, given the same

normalization strategy for the various speech stimuli used in this study, the TRF responses can be compared in terms of their am-

plitudes, despite their description in terms of arbitrary units.

QUANTIFICATION AND STATISTICAL ANALYSIS

TRFwaveforms in Figures 2B, 3B, 3F and S2Awere tested as being significantly less than zero using a running one-tailed t test across

subjects. The resulting p values were corrected using the False Discovery Rate (FDR) method [50]. Thicker lines indicate time points

of responses that are statistically less than zero (p < 0.05). Statistical differences between TRF waveforms for forward versus time-

reversed speech (Figure 2B), audio-only versus audiovisual conditions (Figure 3B) and attended versus unattended (Figure 3F) were

tested using one-tailed t tests. The resulting p values were FDR corrected. In experiment 2, to evaluate the improvement in intelligi-

bility from audio to audiovisual conditions via self-report and word detection tasks, we used Wilcoxon signed-rank tests. To quantify

effect size (d’) in comparing mean TRF responses for audio versus audiovisual speech (experiment 2) and attended versus unat-

tended speech (experiment 3) we used Cohen’s d (for experiment 2, n = 21 and for experiment 3, n = 33). The samemeasure of effect

size was used to compare EEG prediction accuracies in experiments 2 (Figure 3C) and 3 (Figure 3G). The difference in magnitude of

the negative component between the attended and unattended TRFs was supported by statistical testing across subjects using a

paired t test. Correlations between behavioral measures andmean TRF amplitude (Figure 3D) and latency (Figure 3H) were quantified

using Pearson’s correlation (n = 21 and n = 33, respectively). Correlations between TRF amplitude and N400 amplitude (Figure S2B)

were quantified using Pearson’s correlation (n = 9). Differences in N400 and TRF peak latency distributions (Figure S2D) were tested

using a Wilcoxon signed-rank test.

DATA AND SOFTWARE AVAILABILITY

Our data is available to download via Dryad at https://doi.org/10.5061/dryad.070jc. The TRF analysis was carried out using the

freely available multivariate temporal response function (mTRF) toolbox, which can be downloaded from https://sourceforge.net/

projects/aespa/.
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Figure S1 | The late negativity in the TRF is linearly related to semantic dissimilarity, Related to 

Figure 1. The semantic dissimilarity impulses were divided into four quartiles based on their magnitude. 

These four quartiles were labelled as the High Dissimilarity Bin, the Medium High Dissimilarity Bin, the 

Medium Low Dissimilarity Bin, and the Low Dissimilarity Bin. Four separate regressors corresponding to 

each of these bins were created where the impulses within each bin were all rescaled to have unit height. 

A, Regressing the EEG data against each of these regressors produced a TRF featuring a negativity over 

centro-parietal scalp in the interval (250 – 500ms; left panel). B, The amplitude of this negativity across 

that time interval showed a monotonic increase with the measure of semantic dissimilarity 



 
 

Figure S2 | Comparison of semantic dissimilarity TRF and the classic N400 event-related potential 

component, Related to Figure 1 and STAR Methods.  A, Grand average waveforms from a midline-

parietal scalp electrode for the classic N400 component (derived by subtracting the average event-related 

potential to congruent sentence endings from that to incongruent sentence endings) and the semantic 

dissimilarity TRF. Thick lines indicate a response that is statistically less than zero across subjects (P < 

0.05, t-test). B, Topographic maps of both the N400 and the semantic dissimilarity TRF over the interval 

375–425 ms. C, The amplitude of the N400 component  in the interval 390–450 ms was correlated with the 

amplitude of the semantic dissimilarity TRF in the interval 330–390 ms across the 9 subjects (P < 0.02, 

Pearson’s correlation). Importantly, the intervals for the two components were chosen based on the 

distribution of the peak latency for each response type. Specifically, these intervals represented the 25th to 

75th percentiles of those distributions D, The latency of the peak of the negativity in the semantic dissimilarity 

TRF is significantly earlier than the peak of the N400 across subjects (Wilcoxon signed-rank test, P = 

0.0117). 


	CURBIO14371_annotate.pdf
	Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of Natural, Narrative Speech
	Results
	A Neural Correlate of Semantic Dissimilarity in Natural Speech
	Neural Signatures of Semantic Dissimilarity Depend on Intelligibility
	No Evidence of Contextual Semantic Processing for Unattended Speech
	On the Relationship of the Semantic Dissimilarity TRF Negativity to the N400 Component

	Discussion
	Supplemental Information
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Method Details
	Data Acquisition and Pre-processing
	Stimuli and Procedures
	Computational Model and Regression

	Quantification and Statistical Analysis
	Data and Software Availability




