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Resolution of impaired multisensory processing in
autism and the cost of switching sensory modality
Michael J. Crosse 1,2,3✉, John J. Foxe 1,2,4, Katy Tarrit4, Edward G. Freedman 4 & Sophie Molholm1,2,4✉

Children with autism spectrum disorders (ASD) exhibit alterations in multisensory proces-

sing, which may contribute to the prevalence of social and communicative deficits in this

population. Resolution of multisensory deficits has been observed in teenagers with ASD for

complex, social speech stimuli; however, whether this resolution extends to more basic

multisensory processing deficits remains unclear. Here, in a cohort of 364 participants we

show using simple, non-social audiovisual stimuli that deficits in multisensory processing

observed in high-functioning children and teenagers with ASD are not evident in adults with

the disorder. Computational modelling indicated that multisensory processing transitions

from a default state of competition to one of facilitation, and that this transition is delayed in

ASD. Further analysis revealed group differences in how sensory channels are weighted, and

how this is impacted by preceding cross-sensory inputs. Our findings indicate that there is a

complex and dynamic interplay among the sensory systems that differs considerably in

individuals with ASD.
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B iological events tend to be multisensory, emanating or
reflecting multiple forms of energy (e.g., photons, airborne
vibrations, volatilised molecules, etc.). Humans have

evolved a highly specialised set of sensory receptors that enable us
to sample these different forms of energy concurrently, optimis-
ing how we perceive ecologically relevant information. For
instance, processing redundant audiovisual cues often leads to
faster response times (RTs) than processing the same information
separately, a phenomenon known as the redundant signals effect
(RSE)1–3. The RSE can be explained by parallel processing models
such as the popular race model, which predicts that a response is
triggered independently by the faster sensory channel4. However,
the observed RSE typically exceeds the benefit predicted by mere
statistical facilitation5. This multisensory effect has been
demonstrated using bisensory detection tasks for several decades
and is widely interpreted as reflecting the speed-up in processing
time due to multisensory integration6–15.

Whereas multisensory processing clearly influences how we
perceive most biological events, particularly in instances when
sensory evidence is ambiguous16–19, individuals with autism
spectrum disorders (ASD) often do not benefit from the avail-
ability of multisensory information to the same extent as their
neurotypical (NT) peers20–27. We and others have suggested that
impaired multisensory processing in ASD contributes to some of
the commonly associated phenotypes such as atypical responses
to sensory stimulation, and may even have detrimental effects on
higher-order cognitive processes such as social interaction and
communication28–34.

Previous studies using audiovisual (AV) speech stimuli have
demonstrated that multisensory processing deficits observed in
high-functioning children with ASD are not evident in teenagers
with the disorder25,35. In contrast, when performing a simple AV
detection task with flashes and beeps, high-functioning teenagers
with ASD failed to show the same levels of multisensory gain as
their NT peers36. Recent theoretical32 and computational37 per-
spectives have suggested that the constant exposure to AV speech
during maturation may serve to train multisensory speech func-
tion, leading to resolution of AV speech deficits in ASD at an
earlier age. However, the empirical question remains as to whe-
ther the resolution of multisensory deficits in ASD is specific to
complex, social stimuli, or if instead it generalizes to more basic
deficits in multisensory processing. This has obvious implications
for understanding the basis of impairments in higher-order
cognitive processes in ASD (e.g., social communication), as well
as for neurobiological theories of ASD. Here, using the same
bisensory detection task36,38, we tested the hypothesis that basic
multisensory deficits observed in high-functioning children and
teenagers with ASD would not be evident in adults with the
disorder.

Electrophysiological studies in the cat superior colliculus have
shown that the ability of neurons to integrate multisensory inputs
is not present at birth39,40, but rather emerges and matures in the
immature nervous system with exposure to multisensory
experiences41–44. Computational modelling suggests that multi-
sensory signals interact by default in a competitive manner,
inhibiting effective processing of such stimuli45. Considerable
postnatal exposure to multisensory cues is thought to strengthen
excitatory cross-sensory projections, promoting processing of a
facilitative nature46–48. While numerous developmental studies in
humans have reported reduced multisensory ability in young
children49,50, there is little empirical evidence of such competitive
multisensory processing other than that reported in adults51–53.
Here, we used a computational modelling framework to directly
test whether behaviour in children reflected multisensory pro-
cessing of a competitive or facilitative nature. The type of infor-
mation processing was determined by how accurately hypothesis-

driven models of multisensory behaviour could predict empirical
multisensory benefits15,54. The same modelling approach was
used to quantify age-related changes in sensory dominance and
any potential group differences therein. We expected that such
inherent sensory weighting would have a greater impact on
multisensory processing of a competitive nature.

Multisensory experiments typically require participants to
sequentially process different sensory stimuli in quick succession,
and can thus be thought of as a task-switching paradigm. When
switching from one modality to another, average response times
are slower on trials preceded by a different sensory modality
(switch trials) compared to trials preceded by the same modality
(repeat trials)55–57. These so-called modality switch effects
(MSEs) are inherent to any bisensory detection task that uses an
intermixed stimulus presentation design58,59 and have been
shown to systematically contribute to the RSE because they are
typically larger on unisensory trials than on multisensory
trials60–62. Moreover, data suggest that children with high-
functioning ASD incur a greater cost when switching from
auditory to visual stimuli than their NT peers63. We therefore
examined potential group differences in MSEs and quantified
their contribution to the RSE. Using a computational
framework64, we modelled the trial-to-trial dependency between
RTs on different sensory channels to gain deeper insight into how
this process could be linked to inhibitory cross-sensory switching
effects53,65. We discuss the implications of task-switching on the
interpretation of the RSE, and how the interplay between multi-
sensory integration and task-switching may contribute differen-
tially as a function of age in NT and ASD individuals.

Results
Redundant signals effect. In all, 225 neurotypical (NT) indivi-
duals (age range: 6–36 years; 115 females) and 139 individuals
with a diagnosis of ASD (age range: 6–39 years; 34 females)
performed a speeded bisensory detection task36,38 in which they
were required to respond as fast as possible with a button press to
randomly alternating auditory (A; 1 kHz tone), visual (V; red
disk) and audiovisual (AV; disk/tone pair) stimuli, each with a
duration of 60 ms and an interstimulus interval (ISI) of
1000–3000 ms (see Supplementary Fig. 1). To examine potential
age-related effects, age was treated either as a continuous variable,
or participants were separated into four cross-sectional age
groups: 6–9, 10–12, 13–17 and 18–40 years (see Table 1 for group
sample sizes and demographics). A linear mixed-effects analysis
was used to examine the effects of group, age, and stimulus
condition on response times (R2adj= 0.53). ISI, preceding mod-
ality and subject were included as random factors, and the slopes
of the latter 2 were adjusted for condition66 (see Methods section
for further details). Participants with ASD responded slower to
stimuli than their NT peers (β= 34.45, SE= 11.59, p= 0.003;
Fig. 1a). There was an effect of age, with older participants
responding faster than younger participants (β=−8.98, SE=
0.79, p= 1 × 10−29). Responses to multisensory stimuli were
faster than those to both audio (β= 53.89, SE= 10.53,
p= 3 × 10−7) and visual (β= 69.64, SE= 6.49, p= 8 × 10−27)
stimuli, indicating the presence of an RSE. However, there was an
interaction between age and RSE (RSEA: β=−0.58, SE= 0.21,
p= 0.005; RSEV: β=−0.56, SE= 0.18, p= 0.002).

To examine the RSE further, we measured the proportion of
RTs that were faster on multisensory trials relative to the faster of
the unisensory conditions, i.e., multisensory benefit54. For this,
RT distributions were converted to cumulative distribution
functions (CDFs) to enable analysis of the whole RT
distribution67,68. Empirical benefits were quantified by the area
between the CDFs of the multisensory condition and the faster of
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the unisensory conditions (Eq. 4; Fig. 1b, right). Analogously,
predicted benefits were quantified by the area between the CDFs
of the race model and the faster of the unisensory conditions
(Eq. 3; Fig. 1b, left)54. Here, we used Raab’s independent race
model4, which assumes statistical independence between sensory
channels (see Methods for further details). A linear regression
model was constructed to quantify the effects of group and age on
predicted (R2adj= 0.09, BF01= 9 × 10−6) and empirical (R2adj=
0.25, BF01= 2 × 10−21) benefits. Predicted benefits decreased as a

function of age (β=−0.001, SE= 0.0001, p= 2 × 10−8, BF01=
3 × 10−6) and were not significantly different in NT and ASD
individuals (β= 0.002, SE= 0.0019, p= 0.28, BF01= 9.1). Con-
versely, empirical benefits increased with age (β= 0.002, SE=
0.0002, p= 1 × 10−19, BF01= 3 × 10−17) and were smaller in
individuals with ASD (β=−0.013, SE= 0.003, p= 1 × 10−5,
BF01= 1 × 10−3). This suggests that the race model over-predicts
empirical benefits for younger individuals and under-predicts
them for older individuals (see Fig. 1c). Moreover, the race model

Table 1 Demographic characteristics of participant populations.

NT ASD

6–9 years 10–12 years 13–17 years 18–40 years 6–9 years 10–12 years 13–17 years 18–40 years

n 51 46 54 74 44 33 29 33
nfemale 27 26 24 38 7 6 8 13
nIQ 45 43 48 10 44 33 29 29
Age 8.1 (1.2) 11.5 (1.0) 15.0 (1.3) 25.3 (3.6) 8.1 (1.0) 11.4 (0.7) 14.7 (1.5) 24.8 (5.0)
F1 score 0.90 (0.07) 0.93 (0.06) 0.95 (0.04) 0.97 (0.02) 0.85 (0.08) 0.88 (0.08) 0.93 (0.06) 0.95 (0.04)
FA rate 0.09 (0.07) 0.06 (0.05) 0.04 (0.04) 0.02 (0.01) 0.16 (0.14) 0.13 (0.08) 0.07 (0.06) 0.04 (0.03)
Misses 0.11 (0.09) 0.07 (0.07) 0.04 (0.05) 0.03 (0.02) 0.15 (0.09) 0.12 (0.09) 0.07 (0.06) 0.05 (0.06)
PIQ 106.1 (13.0) 109.7 (10.7) 104.9 (13.3) 109.9 (12.3) 106.2 (17.1) 106.6 (16.2) 108.2 (13.3) 107.8 (14.2)
VIQ 113.0 (10.6) 111.8 (13.0) 113.1 (12.8) 115.1 (16.1) 97.3 (19.8) 99.4 (19.1) 100.0 (19.1) 104.0 (18.7)
FSIQ 111.4 (11.5) 112.2 (11.7) 110.1 (12.5) 114.5 (14.0) 101.7 (17.5) 102.8 (17.4) 104.3 (14.0) 106.2 (16.7)
ADOS – – – – 7.3 (2.3) 8.1 (1.0) 6.9 (3.3) –

PIQ performance IQ, VIQ verbal IQ, FSIQ full-scale IQ (assessed using the WASI).
nfemale indicates the number of female participants in the respective age groups and nIQ indicates the number of participants for whom IQ scores were obtained. The number of participants for whom
ADOS scores were obtained is 31, 19, 7 respectively.
F1 scores indicate participants’ detection accuracy and FA rate indicates participant’s false alarm rate as a proportion of the total trials. Values shown indicate the group mean with standard deviation
shown in parentheses.

Fig. 1 Reaction times and multisensory benefits. a Group median RTs for NT (left panel) and ASD (right panel) individuals as a function of age group.
Error bars indicate 95% CIs (bootstrapped). b RT cumulative probability for each of the three stimulus conditions and the race model (Eq. 1). Predicted
benefits (left panel) are quantified by the area between the CDFs of the race model and the faster of the unisensory conditions (Eq. 3). Empirical benefits
(right panel) are quantified by the area between the CDFs of the multisensory condition and the faster of the unisensory conditions (Eq. 4). Data from an
example NT adult participant. c Predicted benefits versus empirical benefits by age group. Each datapoint represents the area under the curve (AUC) for an
individual participant (blue=NT, red=ASD).
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does not predict the group differences observed in empirical
benefits, suggesting a deficit specific to multisensory processing.

Testing the race model. To test whether the speed-up due to
multisensory processing exceeded statistical facilitation, we
quantified the proportion of audiovisual RTs that deviated from
the predictions of Raab’s independent race model at every RT
quantile. Positive deviations indicate multisensory facilitation and
were detected using right-tailed permutation tests with tmax

correction69. NT participants showed evidence of facilitation at
one or more quantiles in every age group, the number of quantiles
increasing as a function of age (p < 0.05, shaded area, Fig. 2a). The
percentage of participants that exhibited facilitation is illustrated
in Supplementary Fig. 2. Individuals with ASD showed no evi-
dence of facilitation between the ages of 6–12 years (Fig. 2b).
However, evidence of facilitation emerges in adolescence (first
quantile) and becomes more evident in adulthood (first 3 quan-
tiles; see Supplementary Table 2 for test statistics).

To compare deviations from the race model between NT and
ASD individuals of different ages, we computed the root-mean-
square error (RMSE) and correlation coefficient between each
participant’s difference function and that of every other
participant. Prior to assessing the Pearson correlation, a rank-
based inverse normal (RIN) transformation was applied to the

data70. Participants were split into 10 age bins separated by 2.5
years between the ages of 6–21 years. Similarity matrices
containing RMSE and correlation values were obtained by
averaging over the values within each age bin (Fig. 2c). The red
lines indicate the NT groups that were most similar to each ASD
group, and its divergence above the dotted midline suggests that
multisensory behaviour in individuals with ASD corresponded
more closely to that of younger NT individuals (i.e., a potential
delay in age-related changes). Convergence of the red lines
towards the midline in 18.5–21-year-olds suggests that this delay
may resolve in adulthood, in line with our original hypothesis.
This absence of multisensory deficits in adulthood is further
examined in the following section.

Resolution of multisensory deficits in ASD. To examine this
potential delay in age-related changes in ASD, we constructed a
linear model to evaluate the effects of group and age on multi-
sensory gain (R2adj= 0.39, BF01= 1 × 10−35). Multisensory gain
was quantified by the net proportion of multisensory RTs that
were faster than the independent race model (Eq. 5; Fig. 3a).
Multisensory gain exhibited a moderate increase as a function of
age (β= 0.0025, SE= 0.0002, p= 4 × 10−21, BF01= 0.98) but was
significantly reduced in participants with ASD compared to NT
individuals (β=−0.023, SE= 0.007, p= 0.001, BF01= 6 × 10−5).

Fig. 2 Testing the race model. a, b Multisensory facilitation was quantified by the difference between the CDFs of the multisensory condition and the
independent race model. Positive deviations reflect the proportion of multisensory RTs that were faster than predicted by the race model. Gray shaded
regions indicate significant positive deviations (p < 0.05, right-tailed permutation tests, tmax corrected). Coloured error bounds indicate 95% CIs
(bootstrapped). c Root mean squared error (left panel) and RIN-transformed Pearson correlation coefficient (right panel) between the difference functions
for NT and ASD participants of different ages (range: 6–21 years, increment: 2.5 years). Red lines indicate the minimum (left panel) and maximum (right
panel) values of each row (i.e., the NT groups that were most similar to each ASD group). Divergence of the red line above the dotted midline indicates a
potential delay in age-related changes in ASD.
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The absence of an interaction between group and age suggests
that this age-related effect was present in both groups
(β= 0.0005, SE= 0.0004, p= 0.22, BF01= 8.84). Group com-
parisons were conducted within each of the four age groups. For
this, NT participants were sex, age and IQ-matched to each of the
ASD participants and difference functions were compared at
every quantile using two-tailed (unpaired) permutation tests (see
Methods section for further details). Group differences were
observed in the 10–12-year-olds at quantiles 4–6, and in the
13–17-year-olds at quantiles 2–5 (p < 0.05, shaded area, Fig. 3c).
To determine whether this multisensory deficit in ASD can be
said to resolve in adulthood, a Bayes factor analysis was used to
provide evidence in favour of the absence of any group differ-
ences based on the net multisensory gain (Fig. 3d). Group dif-
ferences were observed in participants aged 6–9 years
(t(86)= 2.37, p= 0.021, Hedge’s g= 0.50, 95CI [0.09, 0.94],
BF01= 0.47), 10–12 years (t(64)= 3.48, p= 0.001, Hedge’s
g= 0.85, 95CI [0.40, 1.36], BF01= 0.03) and 13–17 years
(t(56)= 3.13, p= 0.003, Hedge’s g= 0.81, 95CI [0.33, 1.37],
BF01= 0.08), but there was no evidence to suggest a group

difference in participants aged 18–40 years (t(64)= 1.02,
p= 0.310, Hedge’s g= 0.25, 95CI [−0.23, 0.77], BF01= 3.34).

To examine these age-related changes in greater detail, we
treated age as a continuous variable (Fig. 3e). Age was highly
predictive of multisensory gain between 6–17 years (NT:
R2= 0.34, p= 2 × 10−5, BF01= 7 × 10−13; ASD: R2= 0.21,
p= 2 × 10−5, BF01= 8 × 10−5) but not between 18–40 years
(NT: R2= 0.005, p= 0.56, BF01= 9.22; ASD: R2= 0.015, p= 0.5,
BF01= 5.92), suggesting that progression of this process ceases in
adulthood. To characterise the trajectory of multisensory
processing as a function of age more precisely, we calculated
the mean multisensory gain with a moving window k of 7 years in
increments of 1 year between the ages of 6 and 26 years (Fig. 3f).
Controls were sex, age and IQ-matched to ASD individuals
within each 7-year window and compared using two-tailed
permutation tests (FDR corrected) and Bayes factor analyses. In
NT participants, multisensory gain increased steadily between the
ages of 6–17 years. In individuals with ASD, the rate of increase
was slower and the average gain was significantly lower than that
of their NT peers between 6–17 years (p < 0.05, shaded area,

Fig. 3 Resolution of multisensory deficits in ASD. a RT cumulative probability for each of the three stimulus conditions and the race model. Multisensory
gain is quantified by the area between the CDFs of the multisensory condition and the race model (Eq. 5). Data from an example NT adult participant.
b The area under the curve (AUC) below zero is negatively correlated with the AUC above zero, providing information about participants that do not
exhibit facilitation. c Race model violation for ASD (red trace) and sex, age, and IQ-matched NT (blue trace) participants by age group. Coloured error
bounds indicate 95% CIs (bootstrapped). Gray shaded regions indicate significant group differences (p < 0.05, two-tailed permutation tests, tmax

corrected). dMultisensory gain by age group. Boxplots indicate the median value (black line) and interquartile range (grey box). Each datapoint represents
the AUC of an individual participant (blue=NT, red=ASD). Brackets indicate unpaired statistical comparisons (*p < 0.05, **p < 0.01, ***p < 0.001, two-
tailed permutation tests, FDR corrected). e Multisensory gain as a function of age for NT (left) and ASD (right) individuals. Each datapoint represents the
AUC of an individual participant. f Mean multisensory gain calculated with a moving window k of 7 years in increments of 1 year from 6 to 26 years for NT
(blue trace) and ASD (red trace) participants. Participants were sex, age and IQ-matched within each 7-year window. Coloured error bounds indicate 95%
CIs (bootstrapped). Gray shaded regions indicate significant group differences (p < 0.05, two-tailed permutation tests, FDR corrected).
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Fig. 3f). In adults aged 18 years and over, there was no evidence to
suggest any significant group differences (p > 0.05). Moreover,
our Bayes factor analysis provided evidence in favour of the
absence of an effect between the ages of 22–26 years (BF01 > 3; see
Supplementary Fig. 3), suggesting that this deficit resolves in
adulthood as originally hypothesised.

Modelling multisensory behaviour in ASD. Raab’s independent
race model has been shown to provide strong predictions of the
RSE in healthy adults, suggesting that the basic underlying neural
architecture may follow that of the race model15,54,64. This is also
consistent with the fact that the logic operations of the race model
(i.e., logic OR gate) exactly match the tasks demands of a
bisensory detection task (i.e., respond to the presence of a signal
on channel A or channel V)59. To assess whether the independent
race model could provide similar predictions of multisensory
behaviour in children and individuals with ASD, one-way

ANCOVAs were used to measure the correlation between pre-
dicted and empirical benefits in each age group by treating age
group as a partialled out categorical variable71. Predicted benefits
were correlated with empirical benefits in NT individuals
(F(1,217)= 62.88, p= 1 × 10−13, R2= 0.23, BF01= 1 × 10−19) and
less so in individuals with ASD (F(1,131)= 5.64, p= 0.019,
R2= 0.041, BF01= 0.35), but an interaction between age group
and predicted benefits in NT individuals suggested that this
relationship was age-dependent (NT: F(3,217)= 5.4, p= 0.0013,
R2= 0.07, BF01= 0.97; ASD: F(3,131)= 2.22, p= 0.088, R2= 0.05,
BF01= 51.9). Figure 4a, b shows that the ability of the race model
to predict empirical benefits increases dramatically as a function
of age. While the race model predicted a significant proportion of
the variance in the 18–40-year-olds (NT: R2= 0.49, p= 2 × 10−5,
BF01= 6 × 10−10; ASD: R2= 0.15, p= 0.028, BF01= 0.66), it
accounted for almost none of the variance in the 6–9-year-olds
(NT: R2= 0.008, p= 0.54, BF01= 7.58; ASD: R2= 0.002, p= 1.0,
BF01= 8.15).

Fig. 4 Modelling multisensory behaviour. a Predicted benefits versus empirical benefits for NT (left panel) and ASD (right panel) participants. Each
datapoint represents the AUC of an individual participant and age group is indicated by colour. Solid lines represent linear fits to the data by age group.
b Pearson correlation coefficient (r) of the regression fits in a. Asterisks indicate significant correlations (p < 0.05, two-tailed permutation tests).
c, d Hypothetical models of multisensory competition were tested. Model 1A was biased towards the auditory modality and Model 1V towards the visual
modality (Eq. 6). Model 2A was biased towards the preceding modality and the A modality when preceded by an AV trial, and Model 2V was biased
towards the preceding modality and the V modality when preceded by an AV trial (Eq. 7). The probability p of multisensory processing being facilitative
(race model) or competitive (bias model) was parametrically varied between 0 and 1 in increments of 0.25 (Eq. 8). The ability of the models to predict
empirical benefits was assessed within each age group based on the Pearson correlation coefficient. Data presented are the two younger age groups. See
Supplementary Fig. 4 for the two older age groups.
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In light of this result and recent findings, we wished to test the
hypothesis that multisensory processing in early childhood is
governed by a competition rather than facilitation45. While
facilitation would likely follow the predictions of the race model,
we hypothesized that competition would follow the predictions of
the more dominant sensory modality. Thus, we tested the
predictions of models that were biased towards either a specific
modality (Models 1A and 1V; Eq. 6) or the previous modality
(Models 2A and 2V; Eq. 7). The probability p of multisensory
processing being facilitative (race model) or competitive (bias
model) was parametrically varied between 0 and 1 in increments
of 0.25 (Eq. 8; see Methods section for further details). In children
with ASD aged 6–9 years, Model 2A was most accurate at
predicting empirical benefits, suggesting that their responses were
triggered by the previous modality with an auditory bias (Fig. 4c).
In their NT peers, none of the bias models exceeded the
performance of the race model considerably, but there was
evidence in favour of an auditory bias once again. In ASD
participants aged 10–12 years, Model 2V dramatically exceeded
race model performance, suggesting that RTs were largely
determined by the previous modality but this time with a visual
bias (Fig. 4d). In their NT peers, there was no major improvement
beyond the race model, but there was evidence of a visual bias as
well. In teenagers and adults, none of the bias models out-
performed the race model, suggesting that individuals with ASD
transition from competition to facilitation during adolescence
(Supplementary Fig. 4).

Age-related changes in sensory dominance. To further examine
age-related patterns in sensory dominance, we tested Model 1A
and Model 1V with the probability of a sensory-specific bias set to
1 (Eq. 8). Evaluating model performance as before, we noticed an
auditory dominance in both groups at 6–9 years that shifted to a
visual dominance by 10–12 years (Fig. 5a). In the NT group, this
visual dominance appears to continue into adulthood in accor-
dance with the well-known Colavita visual dominance effect72.
However, in the ASD group, this sensory weighting appears to
shift once again in adolescence, leading to an apparent auditory
dominance in adulthood.

If such biases exist, one would expect to see larger switch costs
on AV trials preceded by the less dominant modality than those
preceded by the dominant modality. To test this hypothesis, we
examined modality switch effects (MSEs) on AV trials, separating
trials preceded by A and V trials (A→AV and V→AV,
respectively). MSEs were quantified by deriving separate CDFs
for switch and repeat trials and computing the area between them
(Eq. 9; see Methods section for further details). Additionally,
MSEs in each condition were normalized by that of the grouped
condition (V/A→AV) to allow for meaningful comparison across
age groups (this did not change the results qualitatively). Based
on our modelling of sensory dominance, we expected to see
greater MSEs on V→AV trials for NT children aged 6–9 years,
and on A→AV trials for NT individuals aged 10 years and over.
We expected something similar for ASD individuals with another
shift in adolescence. The data in Fig. 5b suggest that, as predicted,
MSEs were greater on V→AV trials for NT 6–9-year-olds and on
A→AV trials for NT 10–40-year-olds. For ASD individuals, the
data suggest the reverse, with greater MSEs on A→AV trials in
children and teenagers (6–17 years) and on V→AV trials for
adults (18–40 years).

Reduced switch costs in ASD. To detect potential group differ-
ences in the behavioural cost of switching sensory modality, we
modelled the effects of diagnosis, age, and condition on MSEs
(R2adj= 0.304, BF01= 2 × 10−80). MSEs increased with age

(β= 0.002, SE= 0.0002, p= 1 × 10−24, BF01= 7 × 10−21) and,
contrary to previous work63, were reduced in individuals with
ASD compared to NT individuals (β=−0.012, SE= 0.002,
p= 4 × 10−7, BF01= 9 × 10−5). Compared to multisensory trials,
MSEs were larger on both auditory trials (β= 0.048, SE= 0.003,
p= 2 × 10−59, BF01= 3 × 10−59) and visual trials (β= 0.037,
SE= 0.003, p= 7 × 10−38, BF01= 3 × 10−59). Follow-up permu-
tation tests and Bayes factor analyses revealed that MSEs were
only reduced in the adolescent ASD group when switching from
auditory to visual stimuli (t(56)= 3.63, p= 0.001, Hedge’s
g= 0.94, 95CI [0.46, 1.52], BF01= 0.02; Fig. 6a). A more detailed
examination using a moving mean estimate of MSE showed that
these group differences emerged between the ages of 11–17 years
(p < 0.05, shaded area, FDR corrected; Fig. 6b, right) and were
strongest at around 16 years (Hedge’s g= 0.93, 95CI [0.48, 1.42],
BF01= 0.01). For visual to auditory switches, MSEs were once
again reduced in individuals with ASD between 14 and 16 years
of age (Hedge’s g= 0.68, 95CI [0.27, 1.14], BF01= 0.07). For
effect size and Bayes factor analyses, see Supplementary Fig. 5.

Contrary to our results, a study by Williams, et al.63 found that
individuals with ASD between the ages of 8–15 years exhibited a
greater cost to switching from auditory to visual stimuli than their
age-matched NT peers. To test this directly, we performed a left-
tailed permutation test and Bayes factor analysis on a group of
sex, age and IQ-matched participants between the ages of 8–15
years (n= 79 per group) and used a similar measure of MSE
based on the mean RT. However, this analysis did not suggest
that MSEs were greater in individuals with ASD (NT:
30.0 ± 27.4 ms, ASD: 19.7 ± 42.2 ms; t(156)= 1.82, p= 0.964,
Hedge’s g= 0.29, 95CI [−0.01, 0.60], BF01= 23.58), confirming

Fig. 5 Age-related changes in sensory dominance. a Sensory dominance
was examined by measuring the performance of Model 1A (auditory bias,
solid trace) and Model 1V (visual bias, dotted trace) with the probability of
a sensory-specific bias p set to 1 (Eq. 8). The ability of each model to
predict empirical benefits was assessed within each age group based on the
Pearson correlation coefficient. b Modality switch effects for AV trials
separated by trials preceded by A-stimuli (solid trace) and V-stimuli
(dotted trace). MSEs were quantified by the area between the CDFs of the
switch and repeat trials and normalised by the grouped V/A→AV MSEs.
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that the inconsistency between our studies was not a consequence
of how MSE was quantified. The only remaining difference
between our studies was that Williams, et al.63 used longer ISIs
(3–5 s vs. 1–3 s). Thus, we repeated the test, but limited RTs to
trials with preceding ISIs between 2.5–3 s. Once again, there was
no evidence to suggest that MSEs were greater in individuals with
ASD (t(156)= 1.30, p= 0.905, Hedge’s g= 0.21, 95CI [−0.10,
0.51], BF01= 18.43). However, limiting the analysis to longer ISIs
did result in a reduction in mean MSE in both NT individuals
(18.5 ± 43.5 ms, t(78)= 3.01, p= 0.008, Hedge’s g= 0.32, 95CI
[0.11, 0.58], BF01= 0.16) and individuals with ASD (7.5 ± 60.7
ms, t(78)= 1.95, p= 0.102, Hedge’s g= 0.23, 95CI [0.00, 0.48],
BF01= 1.79), suggesting invocation of disparate processing
underlying MSEs at shorter versus longer ISIs.

Modelling channel dependency and RT variability. To gain
deeper insights into the factors that shape multisensory facilita-
tion and switch costs, we adopted a computational modelling
framework developed by Otto and Mamassian64. This framework
extends Raab’s independent race model such that it includes 2
additional free parameters, η and ρ (Fig. 7b), that enable a more
accurate fit to empirical multisensory RTs (see Methods for fur-
ther details). The first parameter η accounts for the additional
variability or noise typically observed in empirical multisensory
RTs relative to that predicted by Raab’s race model; this increase
could be due to the pooling of neuronal activity (and variability)
during multisensory processing. The second parameter ρ allows
us to quantify the trial-to-trial correlation between RTs on dif-
ferent sensory channels; this correlation typically presents as a
negative channel dependency for healthy adults because neural
processing on one channel likely happens at the expense of
processing on the other5,64. We can visualise this negative
dependency by plotting the average frequency of switch versus
repeat trials per quantile in our NT adult group (see Fig. 7a). We
hypothesized that the increase in RT variability would be larger
for individuals with higher multisensory gain, and that channel
dependency would be lower or more negatively correlated for

individuals with greater MSEs. The best-fitting estimates of the
noise parameter η increased with age (β= 0.005, SE= 0.0008,
p= 2 × 10−10) but there was no evidence to suggest a group
difference (β=−0.007, SE= 0.012, p= 0.58; R2adj= 0.105;
Fig. 7c). The best-fitting estimates of the correlation parameter ρ
decreased with age (β=−0.037, SE= 0.003, p= 5 × 10−33) and
were more positive-going in ASD (β= 0.22, SE= 0.04,
p= 2 × 10−7; R2adj= 0.382; Fig. 7d). Follow-up tests revealed
group differences in participants aged 6–9 years (t(86)= 2.32,
p= 0.021, Hedge’s g= 0.49, 95CI [0.08, 0.93], BF01= 0.44),
10–12 years (t(64)= 3.27, p= 0.002, Hedge’s g= 0.80, 95CI [0.31,
1.41], BF01= 0.05) and 13–17 years (t(56)= 3.20, p= 0.002,
Hedge’s g= 0.83, 95CI [0.32, 1.44], BF01= 0.06). As predicted,
channel dependency was more negative for participants that
exhibited larger MSEs in both NT individuals (rAV=−0.15,
p= 0.02; rA=−0.47, p= 2 × 10−4; rV=−0.36, p= 2 × 10−4)
and individuals with ASD (rAV=−0.15, p= 0.02; rA=−0.5,
p= 2 × 10−4; rV=−0.29, p= 2 × 10−4; Fig. 7e).

Linking sequential and multisensory effects. To examine the
relationship between modality switch effects and multisensory
gain, we performed a series of partial correlations across parti-
cipants, controlling for age (see Supplementary Table 3). As one
might predict, there was a strong positive correlation between
multisensory gain on switch trials and MSEs on unisensory trials
(but not on multisensory trials). However, there was no sig-
nificant correlation between multisensory gain on repeat trials
and MSEs on unisensory trials, whereas there was a strong
positive correlation with MSEs on multisensory trials (see Sup-
plementary Fig. 6). This pattern, which was identical in both
groups, confirms that MSEs on unisensory trials are more likely
to contribute to multisensory gain. Figure 8a, b illustrates the
impact of switching sensory modality on multisensory facilitation.
87% of NT individuals exhibited a larger multisensory gain on
switch trials than on repeat trials (t(224)= 15.62, p= 0.0002,
Hedge’s g= 0.84, 95CI [0.73, 0.96], BF01= 4 × 10−35), with 83%
of individuals with ASD showing the same (t(138)= 7.22,

Fig. 6 Modality switch effects. aMean MSE for each condition by age group. MSEs were quantified by the area between the CDFs of the switch and repeat
trials (Eq. 9). Error bars indicate 95% CIs (bootstrapped). Asterisks indicate significant group differences (p < 0.05, two-tailed permutation tests, tmax

corrected). b Mean MSE for visual to auditory (left panel) and auditory to visual (right panel) switches calculated with a moving window k of 7 years in
increments of 1 year from 6–24 years for NT (blue trace) and ASD (red trace) participants. Coloured error bounds indicate 95% CIs (bootstrapped). Gray
shaded regions indicate significant group differences (p < 0.05, two-tailed permutation tests, FDR corrected).
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Fig. 7 Modelling channel dependency and RT variability. a Frequency of visual and auditory trials preceded by auditory trials in each quantile (i.e., switch
vs. repeat trials). Quantiles are indicated by a grayscale, graduating from black (fastest quantile) to white (slowest quantile). Example data averaged over
all NT adult participants. b CDFs were fit to the unisensory RT data and used to predict empirical multisensory RT data via Otto’s context variant race
model64. Free parameters ρ and η account for the correlation between RTs on different channels and increased RT variability or noise, respectively. Data
from an example NT adult participant. c, d Best-fitting model parameters ρ and η by diagnosis and age group. Boxplots indicate the median value (black
line) and interquartile range (grey box). Each datapoint represents an individual participant (blue=NT, red=ASD). e Modality switch effect (MSE) as a
function of model parameter ρ for NT (top panel) and ASD (bottom panel) participants. Each datapoint represents an individual participant (black=AV,
dark grey=A, light grey=V).

Fig. 8 Linking sequential and multisensory effects. a Race model violation by diagnosis and age for switch trials (left panel) and repeat trials (right panel).
b Multisensory gain on switch trials versus repeat trials for NT (left panel) and ASD (right panel) individuals. Each datapoint represents an individual
participant. c, d Mediation model that tested whether modality switch effects (MSEs) mediated the effect of age on multisensory gain. Paths between
nodes are labelled with regression coefficients, with SE in parentheses (*p < 0.001, bootstrapped). In both groups, age predicted gain (top path), and
predicted MSE controlling for gain (lower left path). The middle coefficients indicate formal mediation effects but the significant direct paths between age
and gain controlling for MSE (bottom path) suggest only partial mediation, i.e., MSE did not explain all the shared variance between age and gain.
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p= 0.0002, Hedge’s g= 0.51, 95CI [0.36, 0.66], BF01= 4 × 10−9).
Nevertheless, when we submitted RTs from the repeat trials to a
race model test, both groups exhibited significant levels of
deviation from race model (see Supplementary Table 4).

Having established the relationship between MSEs and multi-
sensory gain, we wished to determine whether the contribution of
the former was full or partial. To do this, we submitted the data to a
mediation analysis73. Specifically, we tested whether MSEs
mediated the relationship between participant age and multi-
sensory gain (Fig. 8c, d; see Methods section for further details).
First, we established that age was a reliable predictor of both MSE
(NT: β= 0.5, SE= 0.06, p= 2 × 10−5; ASD: β= 0.43, SE= 0.09,
p= 0.0001) and multisensory gain (NT: β= 0.58, SE= 0.06,
p= 2 × 10−5; ASD: β= 0.59, SE= 0.08, p= 0.0002), meeting the
first two criteria for mediation. MSE affected gain, controlling for
age (NT: β= 0.26, SE= 0.06, p= 5 × 10−5; ASD: β= 0.28, SE=
0.08, p= 0.001) and the mediation effect was significant for both
groups (NT: β= 0.13, SE= 0.03, p= 4 × 10−5; ASD: β= 0.12,
SE= 0.04, p= 0.001). However, there was still a significant direct
path between age and gain when controlling for MSE (NT:
β= 0.45, SE= 0.06, p= 1 × 10−5; ASD: β= 0.47, SE= 0.09,
p= 5 × 10−5), indicating that MSE only partially mediated the
observed relationship between age and multisensory gain.

Discussion
Our data suggest that the resolution of multisensory deficits in
ASD generalizes to the case of non-social AV stimuli, but that the
trajectory is later than that observed in AV speech studies25,35.
We hypothesized that this delay may be due to lack of environ-
mental exposure to such ecologically-rare stimuli, as this would
limit the opportunity to strengthen the necessary excitatory cross-
sensory connections, which we know only emerge postnatally
with considerable exposure to multisensory experiences41–44.
Alternatively, delayed resolution of multisensory deficits could
result from invocation of neural processes with longer develop-
mental trajectories. Indeed, multisensory gain in NT individuals
has been shown to reach full maturity much later for simple AV
stimuli38 compared to AV speech stimuli74. This undoubtedly
affects the average age that individuals with ASD will “catch up”
to their NT peers.

The disparity in multisensory function trajectories for speech
and non-speech stimuli may reflect the fact that multisensory
processing occurs across distributed networks and that different
stimuli and tasks tap into unique processes with varying
trajectories75. The task employed in the current study required
the speeded detection of simple AV stimuli, without dis-
crimination, identification, or any other higher-order cognitive
processing. Integration of such simple AV stimuli likely consists
of early cross-sensory activation of visual and auditory cortical
regions, enhancing detection of the incoming visual and auditory
inputs, respectively6,76,77. In contrast, speech identification
engages an extensive network of hierarchically-organised brain
areas, mapping spectrotemporal representations to phonetic
representations, and from there to lexical-semantic
representations78,79. Moreover, integration of auditory and
visual speech cues may act through multiple integrative
mechanisms, including early visual activation of auditory cortex,
increasing perceptual sensitivity80, and later integration of visual
speech content (i.e., place and/or manner of articulation), redu-
cing the density of phonemic and lexical neighbourhoods81,82.
Clearly, task demands and stimuli play a major role in the pat-
terns of multisensory deficits and their resolution that are
observed for any given experimental paradigm.

Alternatively, differences in age-related changes in multi-
sensory function could be caused by invocation of neural

processes distinct from those under study. Phenomena such as
modality switch effects, which contribute significantly to multi-
sensory gain in a bisensory detection task, but not in an AV
speech identification task, could prolong the perceived trajectory
of multisensory processing. While this is consistent with the fact
that age-related changes in MSEs (visual to auditory) extended
well into adulthood (Fig. 6b, left), the trajectory of multisensory
gain was qualitatively unchanged when the contribution of MSEs
was reduced by focusing our analysis on the repeat trials (see
Supplementary Fig. 7 and Supplementary Table 4). This, and the
results of our mediation analysis, suggest that MSEs are not the
sole driving factor behind the disparity in multisensory proces-
sing trajectories across the two paradigms.

Human behavioural studies have demonstrated the co-
occurrence of multisensory competition and facilitation using
RT measures51. The existence of a visual dominance in adults, i.e.,
the Colavita visual dominance effect72, means that directing
participants to respond to either the auditory or visual compo-
nent of an AV stimulus can have an inhibitive or facilitative effect
on RTs, respectively52. However, in the same way that the race
model is used as a threshold for detecting facilitative multisensory
processing, an upper statistical bound should be used to quantify
genuine competitive multisensory procesing64. Current neuro-
computational perspectives of multisensory development suggest
that competition is the default state of integration in the neonatal
mammalian brain45. Intuitively, a competition scenario would
likely favour the most effective sensory modality, which in our
case would be either the modality that is most dominant due to
an inherent sensory bias (e.g., Colavita effect), or the preceding
modality due to prior allocation of attentional resources. To gain
insight into the nature of multisensory processing in children and
individuals with ASD, we tested two computational models that
reflected the above hypothetical scenarios of multisensory com-
petition. We examined fits between the empirical data and model
behaviour that were based on a parametric weighting of the race
model (facilitation) and each bias model (competition). In chil-
dren with ASD aged 6–12 years, model fits suggested that the
response to an AV stimulus was biased towards the previous
sensory modality, potentially due to the presence of competitive
processing, whereas in their NT peers, the same models provided
only marginal improvements beyond probability summation.
This suggests that NT individuals acquire the ability to process
multisensory information in a facilitative manner at an earlier age
than their ASD peers, who do not show evidence of facilitation
until adolescence. This is consistent with the age at which we
observe the emergence of multisensory facilitation within each
group (see Fig. 2a, b).

Another interesting finding to emerge from our modelling
analysis was that NT children aged 6–9 years appear to be biased
towards the auditory modality during AV processing, but there-
after are biased towards the visual modality. The same pattern
was demonstrated by a follow-up analysis that examined MSE
patterns on multisensory trials. These findings are supported by
previous studies that have reported an auditory dominance in
infants and young children presented with AV stimuli83,84, as
well as the abovementioned Colavita visual dominance effect
commonly reported in adults72. Several studies have traced the
transition from an auditory to a visual dominance over the course
of childhood85,86 and, in line with our data, suggest that this
sensory reweighting occurs at ~9–10 years of age86 (for a meta-
analysis, see Hirst, et al.87). Sensory reweighting has also been
shown to occur ~8–10 years of age for the visual and haptic
modalities49. Our modelling analysis suggests that the same trend
appears to emerge in children with ASD between the ages of 6–12
years, but then reverses once more during adolescence, pre-
ferencing the auditory modality in adulthood. Our MSE analysis
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suggests that a visual dominance exists initially in children with
ASD, shifting to an auditory dominance in adulthood. Indeed, a
visual dominance has been previously reported in children with
ASD88,89, but its progression with age has not yet been docu-
mented to our knowledge. In support of a visual dominance in
ASD, our MSE analysis revealed that children and teenagers with
ASD found it easier to switch from auditory to the visual stimuli
compared to their NT peers.

Prior work by our lab suggests that the neural processes
underlying multisensory integration are impaired in children with
autism36. Specifically, we found that EEG correlates of integration
were weaker (of lower amplitude) and occurred later in the
information processing hierarchy. Neural indices of integration
over parieto-occipital scalp between 140 and 160 ms were pre-
dictive of race model violation in NT children but not in children
with ASD. Using the same paradigm, we recorded intracranial
electrophysiology in adults with epilepsy and demonstrated that
visual stimulation influenced the phase of ongoing oscillations in
auditory cortex77, and auditory stimulation influenced the phase
of ongoing oscillations in visual cortex76, such that cross-sensory
stimulation appears to prime ancillary sensory cortices to make
them more receptive to their primary sensory input. The response
to the primary sensory input (e.g., visual stimulation of visual
cortex) is then enhanced for multisensory trials76, at least in a
bisensory detection task such as the current one. Furthermore,
neuro-oscillatory phase alignment across the sensorimotor net-
work was significantly enhanced by multisensory stimulation, and
was related to the speed of a response77.

Phase resetting of ongoing neural oscillations by functionally
distinct and distant neuronal ensembles is thought to be funda-
mental to multisensory integration90–94. Impaired cross-sensory
phase-resetting, as might be predicted by reduced subcortical and
cortical connectivity, would likely result in impaired integrative
abilities. In autism, there is evidence for such disrupted
connectivity95,96, although these findings are mixed and some-
what inconclusive97. Nevertheless, disrupted connectivity could in
turn lead to impaired cross-sensory phase-resetting and hence
contribute to impaired multisensory processing in ASD. As pre-
viously mentioned, weaker cross-sensory inhibition might
account for reduced MSEs in ASD65, possibly as a result of poorer
brain connectivity. Alternatively, it may be that cross-sensory
connectivity is fully intact in children with ASD, but integration
of multisensory information has not yet transitioned from a state
of competition, to one of facilitation, as discussed earlier46,47.
Recent neurocomputational work by our lab has examined the
link between such an inhibitory neural architecture and the
empirical data present here53,98. Establishing the specific neural
mechanisms that underlie impaired multisensory behaviour in
children with ASD will likely require the use of more advanced
neuroimaging techniques.

One of the unexpected findings to emerge from our MSE
analysis was the reduced switch costs in adolescents with ASD.
This ran contrary to a recent study by Williams et al.63 that
reported larger switch costs (auditory to visual) in individuals
with ASD of approximately the same age. Interestingly, a post hoc
analysis of our data that focused on trials with longer ISIs (closer
to that of Williams et al.63) led to a considerable reduction in
mean MSEs but did not yield any evidence of a group difference.
While we were unable to detect it empirically due to the limited
range of ISIs used in our study (1–3 s), it is possible that there
exists an interaction between group and ISI. A possible expla-
nation for this potential interaction points to the so-called “trace
theory” which originates from research on MSEs in individuals
with schizophrenia99. This theory suggests that sensory infor-
mation leaves traces of residual activity in different neuronal
populations, facilitating the processing of subsequent stimuli of

the same sensory modality and inhibiting the processing of sti-
muli of other modalities. Zubin99 predicted that these traces
attenuate over time but persist longer in individuals with schi-
zophrenia. If such an inhibitory cross-sensory mechanism were
weaker in individuals with ASD, but persisted longer over time, it
would explain the potential interaction and the inconsistency
between our findings and that of Williams et al.63. Evidence in
support of this theory comes from a recent study that demon-
strated that individuals with ASD weight recent stimuli less
heavily than NT individuals and that their perception is domi-
nated by longer-term statistics100. While reduced cross-sensory
inhibition would undoubtedly facilitate processing of subsequent
inputs in other sensory systems and thus lead to lower MSEs in
ASD, it would also likely result in greater susceptibility to dis-
traction by task/sensory-irrelevant information. This is consistent
with previous neurophysiological research by our lab that
demonstrated increased susceptibility to distraction by task-
irrelevant stimuli in children with ASD65. This behavioural deficit
was accompanied by a reduced neural suppression of sensory-
irrelevant information, as indexed by EEG recordings of alpha-
band oscillatory activity. Thus, both behavioural and neurophy-
siological accounts of multisensory attention in ASD are con-
sistent with a reduction in MSE.

Alternatively, reduced MSEs in ASD could be explained by
differences in the ability to make predictions about the sensory
environment. While individuals with ASD have been shown to
utilise longer-term statistics to make predictions about their
sensory environment100, other work suggests that they tend to
overestimate the volatility of their environment at the expense of
learning to build stable predictions101. In the current study, sti-
muli were presented in a random order with equal probability,
meaning there was a 66.6% chance of the same unisensory input
occurring on the next trial (including the AV condition). Based
on these statistics, it is more efficient to predict the reoccurrence
of the same signal (or part of it) on the next trial and to direct
attention therein. If these statistics are not being actively used to
build predictions about the modality of an upcoming stimulus, as
may be the case in ASD, then the participant may be less likely to
prepare for it and thus less averse to switching sensory modality.
This fits well with the notion that individuals with autism rely
more on bottom-up than top-down processing102.

It is well established that MSEs systematically contribute to
multisensory facilitation in a bisensory detection task60,61,103. To
determine the role of MSEs, we performed separate tests of the
race model using switch and repeat trials. While we found that
multisensory gain was much greater on switch trials than on
repeat trials, there was still evidence of facilitation on repeat trials.
However, it is important to consider that in the context of a
mixed block design, responses on repeat trials are likely subject to
residual switch effects from earlier trials (n−2, n−3, etc.). Fur-
thermore, if we consider the impact that switching modality has
on RTs, a mixed block design could be said to violate the
assumption of context invariance. While it is unlikely that it
would present the opportunity to change strategy from trial to
trial in a top-down manner, it is conceivable that the con-
tinuously changing context (from switch to repeat conditions)
could invoke disparate processing mechanisms in a bottom-up
manner (for a detailed discussion, see Shaw et al.62). We also
measured the correlation between multisensory gain and MSEs
on unisensory and multisensory trials, partialling out the effects
of age. There was a strong positive correlation for unisensory (but
not multisensory) stimuli, as would be expected if MSEs were to
impact multisensory gain systematically. This was followed up
with a mediation analysis to determine whether MSEs mediated
the observed relationship between age and multisensory gain.
This analysis indicated only partial mediation, suggesting that
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neural processes other than MSEs (e.g., cross-sensory integration)
were contributing to the observed multisensory gain.

Another way to examine the contribution of MSEs is to remove
the presence of switch trials by using a blocked design. In another
study by our lab62, we demonstrated that RTs to simple AV
stimuli were not faster than race model predictions when the
three conditions are presented in entirely separate blocks. Com-
paring the median RTs between blocked and mixed conditions
revealed a slowing of the unisensory but not the multisensory RTs
in the mixed condition that could be largely accounted for by
increased RTs on switch trials. A similar null result was reported
for an AV word detection task that used a blocked continuous
speech paradigm104. In another study that employed a blocked
design, Otto and Mamassian64 reported evidence of race model
violation, but importantly, presented AV stimuli in background
noise which are more likely to recruit integrative mechanisms
during bisensory detection14,18,105,106. However, it is important to
consider the theoretical implications of employing a blocked
design. The race model test relies on the assumption of context
invariance, because unisensory RTs distributions are used to
model multisensory RTs distributions5,58,107. By randomly
interleaving the conditions, the participant does not know which
condition to expect and presumably processes, say, an auditory
signal in the same way under unisensory and multisensory con-
ditions. Thus, positive deviations from the race model are
assumed to be caused by multisensory integration as opposed to
differences in processing strategies. In contrast, when unisensory
and multisensory stimuli are presented in separate blocks, there
may be opportunity for the subject to employ different processing
strategies to optimise task performance. Hence, it is inherently
difficult to disentangle contributions of switching and integration
when examining the RSE. Violation of the race model likely
involves an interplay between integrative and switching processes
that carry different weights in different contexts (mixed vs.
blocked presentations) and under different stimulus conditions
(clean vs. noisy).

We can draw several conclusions from the present study. (1)
When assessed using the race model test, multisensory processing
in individuals with ASD has “normalized” to neurotypical levels by
adulthood. (2) Computational modelling suggested that multi-
sensory processing in children with ASD takes longer to transition
from the default mode of competition to facilitation. (3) Different
age-related patterns in sensory dominance indicate fundamental
alterations in how the nervous system of children with ASD
responds in a dynamic multisensory environment. (4) The beha-
vioural cost of switching from auditory to visual stimuli is smaller
in teenagers with ASD, possibly due to altered cross-sensory
inhibition or reduced influence of short-term statistics. The current
findings also make clear that there is significant work ahead of us
before we fully understand the neural processes that contribute to
age-related changes in multisensory function and how it differs in
children with ASD. Complicating this endeavour, we must begin to
understand how such empirical evidence collected in high-
functioning individual with ASD translates to those most affected
by the disorder and how future work can strive to obtain mean-
ingful data from low-functioning individuals with ASD. Here we
set the stage for detailed characterisation of these processes and
their interactions, to in turn understand potential roadblocks to the
typical age-related changes in multisensory processing in ASD, and
some of the factors that might contribute to sensory reactivity in
both high- and low-functioning individuals within this group.

Methods
The present study is based on reanalysis of a large body of data collected as part of
several previously published studies36,38,108, as well as unpublished data from more
than 200 additional participants.

Participants. A total of 411 individuals participated in the experiment. The data
of 47 participants (11.4% of the total sample, 34 ASD) were excluded from all
analyses based on the following criteria: (1) they did not fall within the desired
age range of 6–40 years (n= 9), (2) their performance IQ was below 80 or not
recorded (n= 24), (3) their detection accuracy was <3 SDs below the sample’s
mean (<65%, n= 6), (4) they had an excessive number of false alarms (>65%,
n= 4), (5) they had a disproportionate number of hits on visual trials (excessive
eye-closure) or on audio trials (not listening; <50% of other modality, n= 3), (6)
the ISIs used were not within the desired range of 1–3 seconds (n= 1), or (7)
they had less than 20 RTs per condition (n= 1; this can bias median RT
estimates109,110 as well as race model estimates111). Of the remaining 364 par-
ticipants, 225 met criteria for NT (age range: 6–36 years; 115 females) and 139
had a diagnosis of ASD (age range: 6–39 years; 34 females). For analysis pur-
poses, age was treated either as a continuous variable or participants were cross-
sectioned into four age groups: children (6–9 years), pre-adolescents (10–12
years), adolescents (13–17 years), adults (18–40 years). Mean age was not sta-
tistically different between NT and ASD participants in any of the four age
groups (statistics reported in Supplementary Table 1). Participant demographics
are presented in Table 1.

Individuals were excluded from participating in the experiment if they had a
history of seizures or head trauma, or a known genetic disorder. Additionally, NT
participants were excluded if they had a history of psychiatric, educational,
attentional or other developmental difficulties (as assessed by a history
questionnaire), a biological first-degree relative with a known developmental
disorder, or if they or their legal guardians endorsed six or more items of
inattention or hyperactivity on a DSM-IV checklist for attention deficit disorder.
For the vast majority of participants, diagnoses of ASD were obtained by a trained
clinical psychologist using the Autism Diagnostic Interview-Revised112 and the
Autism Diagnostic Observation Schedule (ADOS)113. Diagnoses of the remaining
individuals were made by a licensed clinical psychologist external to this study
using the Diagnostic Criteria for Autistic Disorder from the DSM-IV-TR114. For
more details regarding sub-phenotyping, medication and ethnic demographics,
please refer to previous studies36,108.

Intelligence quotients for performance (PIQ), verbal (VIQ) and full-scale
(FSIQ) were assessed in 65% of NT participants and 97% of ASD participants using
the Wechsler Abbreviated Scales of Intelligence (WASI)115. We found no evidence
to suggest that mean PIQ was statistically different between NT and ASD
participants in any of the four age groups (statistics described in Supplementary
Table 1). To ensure rigorous between-group comparisons, individuals within each
subgroup were matched for sex, age and PIQ using a k-nearest neighbour search.
The descriptive statistics for each of the subgroups are summarised in Table 1.
Participants were formally screened for normal or corrected-to-normal vision using
a Snellen eye test chart and audiometric threshold evaluation confirmed that all
participants had within-normal-limits hearing. All procedures were approved by
the institutional review boards of the City College of New York, Albert Einstein
College of Medicine, and University of Rochester School of Medicine and
Dentistry. All participants or legal guardians of participants provided written
informed consent in accordance with the tenets of the 1964 Declaration of
Helsinki.

Stimuli and procedure. The stimulus materials were identical to those described
previously38. In brief, visual (V) stimuli consisted of a red disc (diameter: 3.2 cm;
duration: 60 ms), located 0.4 cm above a central fixation crosshair on a black
background. The disc subtended visual angles of 1.5° vertically and horizontally
and the bottom of the disc subtended 0.9° vertically above the crosshair. Auditory
(A) stimuli consisted of a 1-kHz pure tone, sampled at 44.1 kHz (duration: 60 ms;
rise/fall time: 5 ms; intensity: 75 dB SPL). Audiovisual (AV) stimuli consisted of the
combined simultaneous pairing of the auditory and visual stimuli described above
(see Supplementary Fig. 1).

Participants performed a speeded bisensory detection task on a computer and
were seated 122 cm from the visual display in a dimly lit, sound-attenuated booth.
RTs were recorded during the simultaneous recording of electrophysiological
(EEG) data, however, the EEG data are not reported in this study (please refer to
previous studies36,38,108). To reduce predictability, the stimuli were presented in a
completely randomised order with equal probability and the interstimulus interval
(ISI) was randomly jittered between 1000 and 3000 ms according to a uniform,
square-wave distribution. The task did not involve any catch trials or background
noise/distractors. Stimulus presentation was controlled using Presentation®
software (Neurobehavioral Systems, Inc., Berkeley, CA). Auditory stimuli were
delivered binaurally at an intensity of 75 dB SPL via a single, centrally located
loudspeaker (JBL Duet Speaker System, Harman Multimedia). Visual stimuli were
presented at a resolution of 1280 × 1024 pixels on a 17-inch Flat Panel LCD
monitor (Dell Ultrasharp 1704FTP). The auditory and visual stimuli were
presented in close spatial proximity, with the speaker placed atop the monitor and
aligned vertically to the visual stimulus. Participants were instructed to press a
button on a response pad (Logitech Wingman Precision Gamepad) with their right
thumb as soon as they perceived any of the three stimuli. Analogue triggers
indicating the latencies of stimulus onsets and button presses were sent to the
acquisition PC via Presentation® and stored digitally at a sampling rate of 512 Hz
in a separate channel of the EEG data file using ActiView software (BioSemi™,
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Amsterdam, The Netherlands). Stimuli were presented in blocks of ~100 trials and
participants typically completed 6–10 blocks in total.

Data analysis. To account for false alarms and excessive button pressing,
detection accuracy was quantified by the harmonic mean of precision and recall,
i.e., F1 score116. Response times were measured relative to the onset time of the
preceding stimulus and analysed in MATLAB (The MathWorks, Inc., Natick,
MA). Responses were excluded from all analyses if there was more than one
response within a given trial (double-presses), they occurred within the first 3
trials of a block (considered training) or the preceding ISI was not between 1000
and 3000 ms (due to system errors). An outlier correction procedure was per-
formed before the main RT analyses. First, RTs that did not fall within 100 and
2000 ms post-stimulus were removed. On average, fast outliers (<100 ms, con-
sidered anticipatory responses) made up 0.7% (±0.9) of trials and slow outliers
(>2000 ms, considered misses) made up 0.4% (±0.6) of trials. Second, RTs
outside the middle 95th percentile (2.5–97.5) of their respective conditions were
removed. While not all RTs outside of this range are necessarily outliers, those
within this range are most likely to come from the cognitive processes under
consideration117. This approach minimises the impact of outliers with only
negligible truncation biases118 and captures the range of RTs at an individual-
participant level, an important factor when dealing with significant inter-subject
variability.

Data analysis was conducted on the whole RT distribution by splitting it into
discrete quantiles67,68. RTs were organised into 20 linearly-spaced quantiles
between the 2.5 and 97.5 cutoffs used for outlier correction. Because outlier
correction was performed separately for each condition, the lowest 2.5 and highest
97.5 percentiles were used for all three conditions to maintain the relationship
between them. Cumulative distribution functions (CDFs) were obtained by
calculating the cumulative probability of RTs occurring below time t of each
quantile given a signal X, P RTX ≤ tjX

� �
. The resulting CDFs can be represented as a

function of time t or quantiles in the unit interval [0, 1]. Here, we use quantiles for
consistency across different analyses and in keeping with previous work119. We
chose to quantify the CDFs as cumulative probabilities (the “vertical” method), as
opposed to taking the additional step to interpolate them to reaction times (the
“horizontal” method). This is particularly important when dealing with a highly
heterogeneous population, as is the case here, because a speed-up indexed by the
proportion of faster RTs can reveal relative effects that could otherwise be obscured
when measured in absolute time (seconds). Note, this approach does not require
there to be an equal number of RTs in each condition120.

Race model analysis. To obtain quantitative predictions of statistical facilitation,
we used Raab’s independent race model4. Let P RTA ≤ tjAV� �

and P RTV ≤ tjAV� �

represent the CDFs of the A and V components of an AV stimulus, respectively.
Assuming the RT distributions of the A and V components overlap, the probability
of either triggering a response can be represented using probability summation. To
solve this analytically, we need to make two assumptions: (1) RTs to the A and V
components of the AV signal follow the same distributions as the RTs to the
unisensory A and V signals, such that P RTA ≤ tjAV� � ¼ P RTA ≤ tjA� �

and
P RTV ≤ tjAV� � ¼ P RTV ≤ tjV� �

, i.e., context invariance107,121,122; (2) RTs to the A
and V components of the AV signal are statistically independent, such that their
joint probability P RTA\V ≤ tjAV� �

can be calculated by the product of
P RTA ≤ tjA� �

and P RTV ≤ tjV� �
123. Simplifying P RTA∪V ≤ tjAV� �

to FA∪V (t),
P RTA ≤ tjA� �

to FA (t) and P RTV ≤ tjV� �
to FV (t), the race model can be repre-

sented as:

FA∪V tð Þ ¼ FA tð Þ þ FV tð Þ � FA tð Þ � FV tð Þ ð1Þ
Note, the joint probability term is often omitted from Eq. 1 to produce an upper

bound of statistical facilitation known as Miller’s bound or the race model
inequality5, as the assumption of channel independence is poorly motivated; it is
likely that responses to signals on different sensory channels compete for
resources5,58,124–126. Assuming that the allocation of such resources is partially
determined by the modality of the previous trial5, we separated the unisensory RTs
by preceding sensory modality (A, V, AV) and computed individual race models
per condition before averaging them:

�FA∪V tð Þ ¼ 1
3 ∑

3

m¼1
FA∪V m; tð Þ ð2Þ

where m is the preceding modality. This method captured some of the dependency
between RTs to signals on different channels, resulting in an estimate of statistical
facilitation that was less conservative on 90% of quantiles over the 364 participants
(two-tailed permutation tests with tmax correction).

Multisensory benefits were quantified by the area between the CDFs in the
multisensory condition and the most effective unisensory condition54. First, we
computed the multisensory benefit predicted by the race model (Fig. 1b, left):

benefitpred ¼ R 1
0
�FA∪V tð Þ �max FA tð Þ; FV tð Þ� �

dt ð3Þ

where the integral is taken over every quantile t from 0 to 1. max FA tð Þ; FV tð Þ� �

represents a lower bound on statistical facilitation, known as Grice’s bound127.

Similarly, we computed empirical benefits based on the observed multisensory RTs
(Fig. 1b, right):

benefitemp ¼ R 1
0FAV tð Þ �max FA tð Þ; FV tð Þ� �

dt ð4Þ
To determine whether the empirical multisensory benefits exceeded the

statistical facilitation predicted by the race model, we computed the difference
between the CDFs of the multisensory condition and the race model at every
quantile6. Positive deviations indicate quantiles where multisensory RTs were faster
than predicted, i.e., facilitation. To obtain an overall index of multisensory gain, we
calculated the area under the curve (AUC) by taking the integral over every
quantile as before (Fig. 3a):

gain ¼
Z 1

0
FAV tð Þ � �FA∪V tð Þdt ð5Þ

While it is common practice to interpret only the positive AUC as an index of
multisensory gain12,128,129, Eq. 6 is equal to the sum of the positive and negative
AUC130,131. This is mathematically equivalent to the difference between predicted
and empirical benefits and represents the overall multisensory gain across the
whole RT distribution. Qualitatively, this is equivalent to using only the positive
AUC132, because the positive and negative AUCs are inversely proportional (see
Fig. 3b). Moreover, many younger participants in this study did not exhibit a
multisensory benefit that exceeded statistical facilitation, rendering a statistical
analysis based on only the positive AUC less powerful. All race model analyses
were conducted using the RaceModel (v1.0) toolbox (https://github.com/
mickcrosse/RaceModel).

Modelling multisensory competition. To determine whether subject behaviour
reflected multisensory processing of a facilitative or competitive nature, we
attempted to model the logical coupling between parallel decision processes for
both cases. Facilitation would likely follow the predictions of the race model as it
exactly matches the task demands of a bisensory detection task, i.e., a logical
disjunction59. Competition, on the other hand, would likely follow the predictions
of the stronger sensory modality because of cross-sensory inhibitory mechanisms53,
regardless of inherent processing speeds on either channel. Such biased channel
coupling could manifest as a result of two potential scenarios: (1) the dominant
sensory modality would generally prevail due to an inherent biological preference,
thus triggering the response or (2) the modality of the previous trial would gen-
erally prevail due to pre-allocated attentional resources, thus triggering the
response. The first scenario was modelled with a bias towards either the auditory
modality (Model 1A) or the visual modality (Model 1V) as follows:

F1b tð Þ ¼ 1
3
∑
3

m¼1
Fb m; tð Þ ð6Þ

where m is the preceding modality (A, V, AV) and b is the modality that the system
is biased towards (A or V). The second scenario was modelled with a bias towards
the previous modality, except when the previous trial was an AV stimulus, where it
was biased towards either the auditory modality (Model 2A) or the visual modality
(Model 2V):

F2b tð Þ ¼ 1
3 FA A; tð Þ þ FV V; tð Þ þ Fb AV; tð Þ� � ð7Þ

The models were used to obtain alternative measures of predicted benefits and
assessed based on how accurately they predicted empirical benefits. To examine
potential age-related transitions in multisensory processing, we parametrically
varied the probability of such processing being facilitative (race model) or
competitive (bias model) as follows:

benefitib ¼
R 1
0 1� p
� �

�FA∪V tð Þ þ pFib tð Þ �max FA tð Þ; FV tð Þ� �
dt; for p ¼ 0; 0:25; ¼ 1 ð8Þ

where Fib (t) is the bias model and p is the probability of it triggering a response.
When p= 0, processing is purely facilitative (race model), and when p= 1,
processing is purely competitive (bias model). In addition, Model 1 was used to
examine age-related changes in sensory dominance which are likely to have a
significant impact during competitive multisensory processing.

Quantifying modality switch effects. To examine modality switch effects (MSEs),
RTs were separated into trials preceded by the same modality (repeat trials) and
those preceded by a different modality (switch trials). Unisensory trials preceded by
multisensory trials (AV→A, AV→V) were excluded from this analysis as they were
considered neither switches nor repeats (repeat trials: A→A, V→V, AV→AV;
switch trials: V→A, A→V, V→AV, A→AV). Separate CDFs were obtained for
switch and repeat trials within each condition. Trials belonging to the two mul-
tisensory switch conditions (A→AV, V→AV) were pooled to produce one mul-
tisensory switch condition (V/A→AV). MSEs were quantified by the area between
the CDFs of the switch and repeat trials:

MSE ¼ R 1
0Frepeat tð Þ � Fswitch tð Þdt ð9Þ

To examine the impact of switching sensory modality on the observed
multisensory gain, separate tests of the race model were performed for switch and
repeat trials.
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Modelling channel dependency and RT variability. Seminal work by Otto and
Mamassian64 has demonstrated that the basic architecture of race models can be
used to accurately predict empirical multisensory RT data by including two
additional free parameters to account for (1) the additional variability or noise η
typically observed in empirical multisensory RTs relative to standard race model
predictions, and (2) the correlation ρ between processing speeds on different
sensory channels. Conceptually, Miller’s and Grice’s bounds assume a perfect
negative and positive correlation respectively, whereas Raab’s model assumes zero
correlation (i.e., independence). Otto’s model on the other hand makes no such
assumptions, allowing the correlation parameter ρ to vary in a way that optimises
the model’s fit to the empirical data. Using the RSE-box133 (v1.0) toolbox (https://
github.com/tomotto/RSE-box), we examined the values of ρ and η that optimised
the model fit for each participant. Gaussian functions were fit to the reciprocal of
the unisensory RT distributions via the LATER model approach134, which assumes
that the reciprocals of the RT distributions are normally distributed with mean μ
and SD σ (see Fig. 7b). These parameters were then used to generate the probability
density function of the maximum distribution f A∪V ðxÞ ¼ f Að�xÞ þ f V ð�xÞ
(refs. 64,135).

Statistics and reproducibility. A linear mixed-effects model was used to deter-
mine which parameters influenced RTs, fit using the maximum likelihood criter-
ion. Single-trial RTs were the continuous numeric dependent variable. Diagnosis
was a contrast-coded fixed factor (NT, ASD), age was a continuous numeric fixed
factor (6–40 years), and condition was a multi-level nominal fixed factor (AV, A,
V). Subjects were included as a random factor, along with by-subject slope
adjustments for condition66. ISI was included as another random factor, as well as
preceding modality with slope adjustments for condition. Subsequent analyses
employing standard linear models coded fixed effects as above.

A mediation analysis136 was conducted using the M3 Mediation (v1.0) toolbox
(https://github.com/canlab/MediationToolbox) to establish whether the relationship
between participants’ age and multisensory gain was mediated by a direct effect of age
on MSE. For this analysis, MSEs were averaged across the two unisensory conditions
(V→A, A→V), as we hypothesized that it was a slowing of unisensory RTs that was
the cause of the observed RSE. We constructed a three-variable mediation model with
age as the causal variable, gain as the outcome variable and MSE as the mediating
variable (see Fig. 8c). All 3 variables were z-scored prior to conducting the analysis.
For MSE to be considered a mediator, the following criteria must be met based on
three separate regressions: (1) the causal variable must affect the outcome, (2) the
causal variable must affect the mediator, and 3) the mediator must affect the outcome
but the causal variable must either no longer affect the outcome (full mediation) or at
least weaken the effect (partial mediation). Significance and SE of the associated path
coefficients were bootstrapped (10,000 samples) and adjusted using the bias-corrected
and accelerated percentile method73.

Significance testing was conducted via nonparametric permutation tests
(10,000 permutations) using the PERMUTOOLS (v1.0) toolbox (https://github.
com/mickcrosse/PERMUTOOLS). Multivariate tests were adjusted to control for
family-wise error rate using the tmax correction method137–139. This method has
been shown to control for Type 1 error at a desired level when performing tests
of the race model at multiple quantiles69. Moving mean analyses were corrected
for multiple comparisons using the false discovery rate (FDR) control
procedure140. Bias-corrected effect sizes (i.e., Hedge’s g141) were calculated using
the MES (v1.0) toolbox141 (https://github.com/hhentschke/measures-of-effect-
size-toolbox). All confidence intervals were bootstrapped (10,000 samples) at the
95% confidence level and adjusted using the bias-corrected and accelerated
percentile method142. Bayes factor (BF01) analyses were conducted using the
Bayes Factor (v2.0) toolbox (https://github.com/klabhub/bayesFactor) to test for
the absence of an effect by quantifying the relative likelihood of the data under
the null versus the alternative hypothesis. Effect sizes were assumed to follow a
Cauchy prior distribution with a scale parameter of 1 and were interpreted using
the standard convention139.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data underlying figures and corresponding demographic information that support
the findings of the study are available to download in anonymised form from Figshare
(https://figshare.com/s/d349bd507d419db8077f).

Code availability
The custom MATLAB scripts used to run the main and supplementary analyses of the
study are available to download from GitHub (https://github.com/mickcrosse/AVSRT-
Autism). Dependencies for conducting the main modelling and statistical analyses have
been packaged by the authors as the abovementioned RaceModel and PERMUTOOLS
toolboxes, respectively, and are available to download from GitHub.
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