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Abstract 

Cognitive neuroscience has seen an increase in the use of linear modelling techniques for studying the 

processing of natural, environmental stimuli. The availability of such computational tools has prompted 

similar investigations in many clinical domains, facilitating the study of cognitive and sensory deficits 

within an ecologically relevant context. However, studying clinical (and often highly-heterogeneous) 

cohorts introduces an added layer of complexity to such modelling procedures, leading to an increased 

risk of improper usage of such techniques and, as a result, inconsistent conclusions. Here, we outline some 

key methodological considerations for applied research and include worked examples of both simulated 

and empirical electrophysiological (EEG) data. In particular, we focus on experimental design, data 

preprocessing and stimulus feature extraction, model design, training and evaluation, and interpretation 

of model weights. Throughout the paper, we demonstrate how to implement each stage in MATLAB using 

the mTRF-Toolbox and discuss how to address issues that could arise in applied cognitive neuroscience 

research. In doing so, we highlight the importance of understanding these more technical points for 

experimental design and data analysis, and provide a resource for applied and clinical researchers 

investigating sensory and cognitive processing using ecologically-rich stimuli. 
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Introduction 

A core focus of cognitive neuroscience is to identify neural correlates of human behavior, with the 

intention of understanding cognitive and sensory processing. Such correlates can be used to explicitly 

model the functional relationship between some “real world” parameters describing a stimulus or 

person’s behavior and the related brain activity. In particular, linear modelling techniques have become 

ubiquitous within cognitive neuroscience because they provide a means of studying the processing of 

dynamic sensory inputs such as natural scenes and sounds (Wu et al., 2006; Holdgraf et al., 2017). Unlike 

event-related potentials (ERPs) – which are a direct measurement of the average neural response to a 

discrete event – linear models seek to capture how changes in a stimulus dimension or cognitive state are 

linearly reflected in the recorded brain activity. In other words, we model the outputs as a linear 

combination (i.e., weighted sum) of the inputs. This enables researchers to conduct experiments using 

ecologically relevant stimuli that are more engaging and more representative of real-world scenarios. This 

contrasts with current standard practices in which discrete stimuli are presented repeatedly in a highly 

artificial manner. Moreover, the simplicity of linear models enables researchers to interpret the model 

weights neurophysiologically, providing insight into the neural encoding process of naturalistic stimuli 

(Haufe et al., 2014; Kriegeskorte and Douglas, 2019). 

The uptake in linear modelling techniques in cognitive neuroscience has led to a similar adoption in the 

applied and translational neurosciences. This has greatly facilitated the study of naturalistic sensory 

processing in various clinical cohorts such as individuals with autism spectrum disorder (Frey et al., 2013) 

and dyslexia (Power et al., 2013; Di Liberto et al., 2018b). However, studying clinical cohorts raises 

important issues when constructing and interpreting linear models. For example, particular care is 

required when performing group comparisons of the model weights and evaluating model performance. 

Furthermore, linear modeling poses challenges and considerations that are not typical for other types of 

electrophysiology analysis. As a model, it is meant first and foremost to quantify the functional 

relationship between the stimulus features of interest and the recorded neural response. Modeling 

electrophysiological data is non-trivial because neighboring time samples and channels are not 

independent of each other, so standard methods for quantifying the significance of the fit cannot be used. 

Furthermore, the interpretation of the results must take into careful consideration the particular 

preprocessing steps applied, which can have major effects on the response patterns obtained with linear 

modeling, especially with respect to filtering, normalization and stimulus representation (Holdgraf et al., 



   
 

   
 

2017; de Cheveigné and Nelken, 2019). Here, we wish to provide guidance and intuition on such 

procedures and, in particular, to promote best practices in applying these methods in clinical studies. 

In this review, we will step through the stages involved in designing and implementing neuroscientific 

experiments with linear modeling in mind. First, we discuss experimental design considerations for 

optimizing model performance. Second, we discuss data preprocessing and stimulus feature extraction 

techniques relevant to linear modeling. Third, we discuss model design choices and their use cases. 

Fourth, we review how to appropriately train and test models as well as evaluate the significance of model 

performance. Fifth, we discuss considerations for comparing models generated using multiple stimulus 

representations. Sixth, we discuss the neurophysiological interpretation of linear model weights. Finally, 

we discuss what can go wrong when using linear models for applied neurophysiology research. 

In each section, via an example experiment, we will also introduce issues that are relevant to clinical 

research. Because linear modeling is commonly used to study the neural processing of natural speech (for 

reviews, see Ding and Simon, 2014; Holdgraf et al., 2017; Obleser and Kayser, 2019), these examples are 

based on a speech study previously conducted by some of the authors, but the methods we describe 

generalize to many other clinical groups, paradigms, and stimulus types. The researcher should modify 

the experimental design, preprocessing and model design steps according to their own research 

questions. Likewise, our focus will be on the linear modeling of EEG data, but these methods can be 

applied to other neurophysiological data types, such as MEG, ECoG and fMRI. When discussing model 

implementation, we will make specific reference to the mTRF-Toolbox, which can be found on github 

(https://github.com/mickcrosse/mTRF-Toolbox). All functions referenced in this article were from version 

3.0. While we do not elaborate on the technical details of the mTRF-Toolbox (for that we point the reader 

to Crosse et al. (2016a)), we do provide example code and briefly walk the reader through its 

implementation. 

Example Experiment 

The example experiment we will describe is based on a previous study performed by some of the co-

authors in this review (Di Liberto et al., 2018b). Individuals with dyslexia (our clinical group) display a 

specific behavioral deficit in the processing of speech sounds (i.e., a phonological deficit), while having 

intact general acoustic processing (Vellutino et al., 2004; Di Liberto et al., 2018b). We hypothesize that 

observed phonological deficits can be explained by weaker phonetic encoding. 



   
 

   
 

To test our hypothesis, we plan to measure how well phonetic features are represented in the ongoing 

brain activity of participants with dyslexia compared to a control group. More specifically, we will quantify 

how much a model that represents phonetic features improves the ability to predict EEG data over a 

model based on acoustic features alone (i.e., the spectrogram). We hypothesize that the predictive 

contribution from the phonetic model is reduced in participants with dyslexia, reflective of impaired 

neural tracking of phonetic features, while the contributions of acoustics are comparable between groups. 

To be clear, while it is inspired by a real study, the example experiment we discuss in this paper is merely 

a toy experiment for didactic purposes. 

Experimental design 

One of the benefits of employing linear models for EEG analysis is the ability to use dynamic and 

naturalistic stimuli. Additionally, it allows the experimenter to study sensory processing in an ecologically-

relevant context, and it also provides researchers the opportunity to design experiments that are more 

engaging for the participants. This can potentially improve the quality of the data collected as well as the 

reliability of the researcher’s findings. Certain factors should be considered when designing naturalistic 

experiments. 

Use subject-relevant stimulus material. This is primarily relevant to speech studies and is important for 

ensuring subject compliance with the task, particularly when studying younger cohorts and individuals 

with neurological disorders or developmental disabilities. For example, it is important when choosing an 

audiobook or movie, that it is 1) age-relevant (e.g., a children’s story versus an adult’s podcast), 2) content-

relevant (a quantum physics lecture may not be everyone’s cup of tea), and 3) language-relevant (speaker 

dialect and even accent may impact early-stage processing across participants/groups differentially). It 

may in some situations be necessary to create such content from scratch by recording a native speaker 

reading the chosen material aloud. However, there are also publicly available stimulus databases such as 

MUSAN: an annotated corpus of continuous speech, music and noise (Snyder et al., 2015), and TCD-TIMIT: 

a phonetically rich corpus of continuous audiovisual speech (Harte and Gillen, 2015). 

Use a well-balanced stimulus set. It is important to consider the frequency of occurrence of particular 

stimulus features that are relevant to the study (e.g., spectral or phonetic features). For example, choosing 

stimulus material that contains only a few instances of particular phonemes will make it difficult to reliably 

model the neural response to such phonemes without overfitting to the noise on those examples. This 

can be avoided by employing phonetically balanced stimuli, such as the aforementioned TCD-TIMIT corpus 



   
 

   
 

(Harte and Gillen, 2015), or in a post hoc manner by focusing the analysis on a subset of the data, i.e., only 

the features that are equally represented or only the time segments where the stimuli are well balanced. 

It is also best to work with longer stimuli that are preferably broadband or quasi-periodic (e.g., speech or 

music recordings). Linear modeling can produce ambiguous results if the stimulus is perfectly periodic 

since periodicity can result in artificially periodic-looking evoked responses which can also increase 

difficulties with quantifying the accuracy of the model.  

In addition, to enhance the model’s ability to disambiguate these response types and better generalize to 

novel stimuli, one might consider how to incorporate additional acoustic variability in one’s stimuli, 

independent of the linguistic content. This could be accomplished by including multiple speakers with 

substantially different spectral profiles (e.g., both male and female speakers), as well as speakers who 

provide a more dynamic range in prosody and intonation across the speech content (e.g., trained actors 

or media presenters). Models that are trained on a broader range of stimuli are less likely to overfit to 

stimulus features that are not of interest to the researcher (such as speaker identity, sex, or location), but 

may perform slightly worse on average. Such decisions should be based on the researcher’s overall goals.  

When considering your stimuli, we also suggest adopting an open mind with respect to possible future 

analyses. Choosing materials that are rich in other features that can be modeled (e.g., semantic content, 

prosody, temporal statistics) can provide fruitful opportunities for re-using your data to tackle new 

questions beyond those planned in your current study (fans of Dr. Seuss and James Joyce beware!). 

Collect enough training data. In order to train a model that generalizes well to new data, it is crucial to 

consider how much training data is required, or in other words, how much new stimulus material it is 

necessary to have. For most purposes, we recommend collecting a minimum of 10 to 20 minutes of data 

per condition, although more data may be required for larger, multivariate models (e.g., spectrogram 

models) or when features are sparsely represented (e.g., the onsets of content words). While it is feasible 

to construct high-quality models from many short (<5 s) stimulus sequences, such as individual words or 

sentences, it is preferable to use longer (>30 s) stimulus passages because it reduces the number of large 

stimulus onset responses in the neural data, which tend to obscure feature-specific responses of interest 

(see EEG preprocessing for tips on avoiding this).  

While more data is always desirable for model training, longer recording sessions can cause subject 

fatigue, compromising their ability to concentrate, particularly in children, older adults, or clinical cohorts. 

Reduced attentional states can negatively impact the neural tracking of stimuli and as a result model 



   
 

   
 

performance (Ding and Simon, 2012; O'Sullivan et al., 2015). Recording time can be shortened without 

compromising model quality by a) removing silent periods in the speech stimuli greater than a certain 

duration in order to maximize information rate (e.g., >300 ms; Ding and Simon, 2013) or b) using subject-

independent models, i.e., models constructed from the data of multiple subjects (see Model design; Di 

Liberto and Lalor, 2017). This issue applies when considering how many different experimental conditions 

to include. When a large number of conditions is unavoidable we recommend splitting the recordings into 

multiple sessions, as inter-session model performance is typically very reliable (Mahajan et al., in prep). 

Overall, the researcher should carefully balance the tradeoff between data quality and quantity in a way 

that meets their needs. 

Use active task designs. Although naturalistic stimuli tend to be inherently more engaging than artificial 

stimuli, the use of prolonged natural stimulus sequences can still induce fatigue which can negatively 

impact data quality and results. To ensure continuous engagement with the stimulus content, we 

recommend including an appropriate behavioral task. This can consist of answering comprehension 

questionnaires immediately after the end of each trial or detecting intermittent targets or anomalies in 

the stimulus (e.g., respond to a certain word, nonsense word or acoustic perturbation)†. The other 

advantage of including a task is that, in addition to potentially improving the quality of the data, the 

researcher will have valuable behavioral data to go with it, such as measures of comprehension, 

intelligibility, detection accuracy or response time. Even tasks that are inherently active, such as auditory 

attention experiments, can be greatly enhanced by the addition of appropriate psychophysical tasks. 

Example experiment 

With these considerations in mind, we chose for our example experiment two professionally-recorded 

audiobooks, each featuring a different Sherlock Holmes adventure. One story is read by a male actor, the 

other by a female actor, giving us increased acoustic variation across phoneme repetitions. Both stories 

last approximately one hour, giving us two hours of EEG data per subject with which to fit our models. 

The stimuli are presented to our subjects in 1-minute-long continuous passages, striking a nice balance 

between reducing onset effects while still providing regular breaks to minimize fatigue and discomfort. 

During stimulus presentation, we record 128-channel EEG data (sampled at 512 Hz) for each of our trials 

 
† It is important to use an appropriate task to avoid the subject engaging with the wrong aspect of the stimulus. For 
example, if we wish them to engage with the language content, then using a speech target, such as a nonsense 
word, is better than them listening out for a physical acoustic anomaly. 



   
 

   
 

(60 × 1-minute trials × 2 stories; Figure 1A). We collect these data from 30 individuals with dyslexia and 

30 sex, age, and IQ-matched control subjects. 

EEG preprocessing 

Prior to constructing our model, it may be necessary to clean and preprocess the EEG data. In our 

experience, linear modeling is fairly robust to sparse artifacts, such as eyeblinks, which are usually 

uncorrelated with the stimulus dynamics/features of interest. However, particularly noisy data can be 

difficult to work with, and neural recordings such as EEG are notoriously noisy. On the other hand, 

aggressive filtering of the data is unfortunately common and can exacerbate existing artifacts, producing 

spurious oscillatory modulations or ringing in the EEG (for an in-depth review, see de Cheveigné and 

Nelken, 2019). In this section, we generally recommend a more conservative EEG preprocessing strategy 

to avoid this, but also make suggestions for a more liberal approach as needed for noisier datasets and 

less cooperative cohorts (e.g., infants or certain clinical groups). Ideally, a single set of preprocessing 

parameters – defined by the noisiest cohort/data – should be applied to all participants within a given 

study. 

In general, we recommend the following preprocessing steps in order:  

1. High-pass filter (HPF) the EEG data to remove any unwanted DC shifts or slow drift potentials 

(<1Hz) that may be present, for example, due to amplifier DC components or electrode junction 

potentials caused by sweating. Note, higher-order filters with sharp roll-offs can introduce 

significant artifacts in the time domain and thus should be avoided (de Cheveigné and Nelken, 

2019). Additionally, we recommend zero-phase-shift filters to prevent temporal shifts that can 

arise during filtering, which would affect the temporal relationship between the stimulus and 

response when modeling. However, zero-phase filters are non-causal, which can affect the 

interpretation of model weights prior to zero lag (see Interpretation of model weights, and de 

Cheveigné and Nelken, 2019). To remove unwanted low-frequency artifacts, we recommend the 

following HPF parameters for cooperative subjects: cutoff frequency in the range [0.1, 0.5] Hz, 

order ≤ 3. For less cooperative subjects, we recommend the following: cutoff frequency in the 

range [0.5, 1.0] Hz, order ≤ 5. Note, for modeling information processing at specific EEG frequency 

bands (e.g., alpha, beta, low gamma), one may wish to use much higher HPF cutoffs as part of a 

band-pass filter. 



   
 

   
 

2. Low-pass filter (LPF) the EEG data to remove any unwanted high frequency noise that may be 

present, for example, due to muscle contractions or environmental interference such as 50/60-

Hz line noise. Linear modeling tends to automatically filter the data in such a way that focuses on 

the most relevant energy range (usually lower-frequencies) for stimulus-based prediction (de 

Cheveigné et al., 2018), however, a LPF step can help in particular with nosier datasets. Similar to 

HPF, we also recommend using zero-phase filters. To remove unwanted high-frequency artifacts, 

we suggest the following LPF parameters for cooperative subjects: cutoff frequency in the range 

[20, 40] Hz, order ≤ 3. For less cooperative subjects, we recommend the following: cutoff 

frequency in the range [10, 30] Hz, order ≤ 5. Again, for modeling information processing at 

specific EEG frequency bands (e.g., delta, theta, alpha), one may wish to use much lower LPF 

cutoffs as part of a band-pass filter. 

3. Remove or interpolate EEG channels with relatively high variance, significant noise/artifacts, or 

that have been compromised due to bridging. We recommend limiting channel interpolation to < 

10% of all channels, any more than that may warrant discarding the entire segment of data 

altogether. As a sanity check, if the newly interpolated data has a high correlation with the 

original, discarded data (i.e., Pearson’s r > 0.5), then the original data may in fact be of good 

quality and it may not be necessary to interpolate them. 

4. Re-reference the EEG data to an appropriate channel(s) to enhance neural activity in a region of 

interest or recover the common mode rejection ratio (CMRR; necessary for EEG systems such as 

BioSemi). While model predictions may be unaffected by re-referencing, it can enhance the 

interpretation of the model weights when done correctly. Mastoid references tend to emphasize 

responses to auditory stimuli over fronto-central scalp while more frontal references tend to 

emphasize responses to visual stimuli over occipital scalp. Alternatively, an average reference 

(i.e., the mean of all channels) is a good choice if one does not want to emphasize the activity of 

a particular region over another, as might be the case in multisensory experiments (for review, 

see Murray et al., 2008). However, when using an average reference, ensure that noisy channels 

are first removed or interpolated (see step 3). 

5. Downsample the data to make model fitting and testing more computationally efficient. This is 

particularly important for larger multivariate datasets which can have long training times. Prior to 

downsampling, low-pass filter the data well below the Nyquist frequency (i.e., below half the 

desired sampling rate) to prevent aliasing. Note that some downsampling functions have an anti-

aliasing filter built in (e.g., resample() in MATLAB). If a LPF is applied in step 2, it can function 



   
 

   
 

as an anti-aliasing filter provided it is below the Nyquist frequency; an additional antialiasing filter 

constitutes an unnecessary filtering operation that introduces additional filtering artifacts. After 

downsampling, the sample rate should be at least 2 times the highest frequency of interest. For 

quantitative modelling analyses, it is possible to downsample to as low as 50 Hz, as most of the 

EEG frequency content is below 25 Hz. For more qualitative analyses such as interpretation of 

model weights or for visualization purposes, a higher resolution of >100 Hz may be desired. 

6. [OPTIONAL] A sparsity-driven artifact rejection method, such as independent components 

analysis (ICA; Hyvärinen and Oja, 2000), can be used to remove distinct artifacts such as eye-

blinks, facial and neck movements, and line noise. 

7. Remove the first 500 to 1000 ms of EEG data at the start of every trial to avoid modelling the 

response to the stimulus onset. Such responses are typically much larger than those that track 

the ongoing changes in the speech signal. For shorter (<5 s) stimuli, this may not be feasible but 

can be helped by avoiding using stimuli with abrupt onsets or by having an initial ramp up in the 

stimulus intensity. 

8. [OPTIONAL] Normalizing the EEG data is not always necessary but there are certain circumstances 

where this may be desirable. For example, it can also be useful to normalize EEG data when 

comparing the magnitude of model weights across datasets collected at different testing locations 

or using different equipment to remove any inherent differences in amplifier gain. Note, this must 

be done with extreme care, especially when comparing different clinical groups. A common 

normalization method is to standardize (or z-score) the EEG by subtracting its mean and dividing 

by its standard deviation. It is important to ensure that if there are multiple EEG files within a 

recording session, normalization is done with respect to the global mean and standard deviation 

to ensure consistency across trials (however, one may wish to omit the test data to avoid 

overfitting). Additionally, this should not be done electrode-by-electrode in order to maintain the 

relative magnitudes between channels. Normalization of EEG data can also be used to obtain 

meaningful units of measure when computing model weights, for example, by scaling the data by 

the EEG amplifier microvolts/bits conversion ratio to obtain microvolt units (see Lalor et al., 2006). 

This step must be done in tandem with the corresponding stimulus normalization step described 

in Stimulus representation and requires careful quantification of certain physical stimulus 

parameters. In general, we recommend avoiding normalizing the EEG data unless it is deemed 

completely necessary. 



   
 

   
 

Example experiment 

Since in our example we are interested in how EEG encodes the speech envelope and phonetic features, 

we base our preprocessing strategy on previous speech research. Neural encoding of natural speech 

occurs primarily in the delta (0.5–4 Hz) and theta (4–8 Hz) EEG frequency bands (Poeppel, 2003; Giraud 

and Poeppel, 2012; Ding and Simon, 2014), so we elect to filter our EEG data between 0.2 and 40 Hz using 

a 3rd order Butterworth filter. Note, such conservative filtering is considered a preprocessing step and 

leaves open the possibility of filtering the data further to explore specific hypotheses about how activity 

in different frequency bands (e.g., delta, theta, alpha, beta, low gamma) might differentially reflect the 

processing of certain features of speech (Ding et al., 2014; Di Liberto et al., 2015). Finally, given that we 

have filtered our data below 40 Hz, we downsample our data from 512 Hz to 128 Hz in order to optimize 

efficiency.  

Further considerations 

These preprocessing steps should be conducted on the entire dataset prior to segmenting it into individual 

trials (i.e., before extracting the minute-long epochs time-locked to the stimulus triggers). Filtering after 

data segmentation can introduce edge artifacts that could masquerade as large onset/offset responses 

and impact subsequent analyses. However, if the EEG data consists of discontinuous trials (i.e., in separate 

files or pauses in the recording between trials), then filtering should be done separately on each trial 

because discontinuities at trial boundaries can introduce filter artifacts. However, artifact rejection such 

as ICA should be done collectively by concatenating all files belonging to the same recording session. 

When using a conservative HPF cutoff (e.g., ≤0.1 Hz), you may wish to first conduct ICA on EEG data that 

was filtered using a higher cutoff (e.g., >1 Hz) and then apply the corresponding ICA weights to the 0.1-Hz 

HPF data. The reason for this being that ICA works best on data filtered above 1 Hz because it can become 

biased towards lower frequencies which tend to have greater power and can be contaminated by 

electrode junction potentials (Winkler et al., 2015). Alternatively, linear denoising source separation (DSS) 

methods based on the reproducibility of the neural response to a repeated stimulus can be used to 

enhance the underlying stimulus-driven EEG signal (de Cheveigné and Parra, 2014). However, many linear 

modeling studies specifically avoid using repeated stimuli in an effort to maximize ecological validity and 

minimize the effects of prediction. In those cases, linear denoising approaches can be used by attempting 

to maximize responses that are common across subjects (de Cheveigné et al., 2019). 



   
 

   
 

Stimulus representation 

Linear modeling requires the researcher to quantitatively define specific stimulus features that are to be 

related to the corresponding brain activity. Decisions to quantify the stimulus features a certain way come 

with their own underlying assumptions. Ultimately, these choices define our hypothesis about how the 

stimulus is represented in the neural activity, and it will determine the stage of processing along the 

sensory or cognitive pathway represented by the resulting model. 

Choosing stimulus features. Stimulus features are derived from some physical or perceptual parameters 

that describe the stimulus. Examples of physical parameters range in complexity from intensity of acoustic 

vibrations and pixel luminance, to motion and spectral content (Figure 1A). Perceptual parameters are 

more abstract and often relate to how such physical parameters are perceptually mapped to categorical 

attributes such as words or objects. A linear model is defined by its choice of stimulus features as they 

determine the level of processing along the sensory or cognitive pathway to be modeled. Such low-level 

and high-level stimulus features can also be combined to create richer stimulus representations that span 

multiple processing stages and explain more of the variance in the neural activity (e.g., Di Liberto et al., 

2015; O’Sullivan et al., 2017). However, when making decisions about stimulus representations, the 

resulting number of model parameters relative to the amount of available experimental data should be 

kept in mind; too many parameters with too few observations can result in overfitting, i.e., the model 

weights will be optimized to the training data but will generalize poorly to new data (such as left-out trials 

or subjects) and thus will not be a reliable representation of the neural system under study. This can be 

avoided by both reducing the number of model parameters and employing a technique known as 

regularization (see Model training and testing). 

Non-linear transformations. Another important factor to consider when extracting the stimulus features 

is that it provides an opportunity to apply biologically relevant non-linear transformations that would 

otherwise be overlooked by the computations of a linear model. For example, many aspects of human 

auditory perception, such as loudness and pitch, bear a logarithmic relationship to the corresponding 

physical properties of sound (Stevens, 1955). Such non-linear relationships between the raw audio signal 

and the related brain activity can be explicitly incorporated into a linear model by applying an appropriate 

logarithmic scaling to the relevant stimulus features. This yields a more biologically plausible model that 

still benefits from the efficiency and interpretability of linear computations. We will step through these 

considerations in our example experiment, but such parameterizations will be up to the researcher who 

should consider: 1) their expectations based on prior literature, and 2) an appropriate, and not 



   
 

   
 

overparameterized, representation of the features of interest. Considerations here will affect the 

interpretation of the model weights (for further discussion, see Interpretation of model weights). 

Normalization. Normalization of stimulus features is a common preprocessing procedure in modeling. It 

serves to ensure that differences in the scale of features does not influence the magnitude of the feature 

weights, and results in more consistent parameter tuning across datasets during training. A common 

normalization method is to z-score the stimulus features by subtracting by its mean and dividing by its 

standard deviation. As mentioned above, if there are multiple stimulus files, it is important that such 

normalization is done with respect to the global mean and standard deviation to ensure consistency across 

trials. Normalization of stimulus features can also be used to obtain meaningful units of measure when 

computing model weights, for example, by scaling the intensity feature by the frame rate of the original 

stimulus to obtain microvolt units (see Lalor et al., 2006). This step can be done in tandem with the 

corresponding EEG normalization step described in EEG preprocessing. 

Example experiment 

In this experiment, we are interested in determining if a phonetic representation of speech explains 

variance in our EEG beyond that explained by an acoustic representation. The first step is to isolate the 

particular feature of interest from the stimulus: the “acoustics”, which will be represented by the speech 

envelope and spectrogram, and the “phonetics”, which will be represented by the timing of phonetic 

features. In general, it is best to consider prior literature on this topic and describe the method of 

extracting the features as much as possible when reporting the results. In our example, we will use feature 

extraction methods based on prior speech literature. To retrieve the spectrogram, the stimulus will be 

filtered into 32 logarithmically-spaced frequency bands using a gammachirp filterbank to model human 

auditory frequency perception (Irino and Patterson, 2006). The narrowband envelopes are then computed 

by taking the moving root-mean square (RMS) over windows of 250 samples to downsample the audio 

from 16 kHz to 128 Hz to match the rate of the EEG (Lalor and Foxe, 2010). Compression was then applied 

to the RMS intensity using a logarithmic scaling (𝑥!.#) to model human auditory intensity perception 

(Stevens, 1955). As mentioned above, this non-linear transformation will improve the efficacy of our linear 

model without increasing its complexity. The broadband envelope is then obtained by summing over 

frequency bands. This procedure can be implemented in mTRF-Toolbox using the mTRFenvelope 

function. To retrieve the timings of the phonetic features, we use a forced aligner that, given text, will 

align the onset and offset of each of the phonemes based on the spectrogram (Prosody-aligner, Montreal 

Forced Aligner) and then map the phoneme timings to their corresponding phonetic features. 



   
 

   
 

 



   
 

   
 

FIGURE 1 | Linear modeling framework and comparison across a family of models. (A) A speech signal can be 

represented by several different features, such as the envelope, spectrogram, and phonetic features. Each of these 

features (or combinations of them) can be regressed against brain activity to estimate single- or combined-feature 

encoding models (TRFs). The TRFs can be used to predict held-out EEG data, channel-by-channel, and the accuracy 

of those predictions can be measured to assess the quality of the model. Here, we compare model performance 

across a set of six bilateral auditory-responsive electrodes (adapted from Di Liberto et al., 2015; Crosse et al., 2016a). 

(B) In a series of experiment trials, an observer (right) is presented a stimulus – here, a speaker (left) produces a 

speech signal (blue time-series shown in the speech bubble), while EEG is recorded simultaneously from their scalp 

(multi-colored time-series shown in the thought cloud). We can extract any of several features from that stimulus, 

such as the envelope (red trace). Forward modeling (top arrow) fits a set of weights in an attempt to predict EEG 

data from a set of stimulus features. Those weights, known as a Temporal Response Function (TRF), are biologically 

interpretable, akin to a conventional Event Related Potential (ERP). Conversely, backward modeling (bottom arrow) 

fits a set of weights that map in the reverse direction, known as a decoder, in order to reconstruct a set of stimulus 

features from the EEG data. While these coefficients are informative, they are not neurophysiologically interpretable 

in the same way as a TRF. 

Model design 

In addition to choosing the relevant input/output features for our model, there are a number of design 

considerations that the researcher must make regarding the model itself. Because we focus on linear 

models here, we do not need to consider the model architecture. Our first design choice is what direction 

we wish the model to map between our stimulus features and brain data, i.e., should it be a forward 

model or a backward model (see Figure 1B)? The second decision is how much temporal context the model 

should have; should it only map between single time points or integrate over several hundred milliseconds 

of data? Third, we need to decide whether we want to construct our model using data from one or more 

subjects in order to optimize generalization of the model. In the following sections, we will discuss the 

details of each design choice and their use cases. For implementation in mTRF-Toolbox, see Box 1. 

Forward models. To paraphrase others (e.g., Carandini et al., 2005), the ultimate test of our 

understanding of sensory processing (and cognitive processing of sensory stimuli) is our ability to predict 

neural responses to those stimuli. To test hypotheses about those computations and resulting 

representations, one can build models that attempt to capture how different features of a sensory 

stimulus affect one’s ability to predict the neural responses (including at different time lags and on 

different neural recording channels). These models are known as forward or encoding models,



   
 

   
 

3 and in the EEG literature they are commonly referred to as temporal response functions or TRFs (Ding 

and Simon, 2012). The weights of a TRF describe how the EEG signal on a given recording channel 

modulates in response to a unit change in a particular stimulus feature. The temporal dynamics of a TRF 

typically exhibit a close correspondence to those of an ERP (Lalor et al., 2006; Lalor et al., 2009). However, 

the components of an ERP describe how the EEG signal on a given recording channel modulates in 

response to the entire stimulus event (that said, ERP researchers often attempt to get at the same 

information by calculating the difference in ERPs to isolated events that differ only in a specific 

parameter). Moreover, we can use a TRF to predict the neural response to a given stimulus sequence, and 

control its smoothness in a way that allows it to generalize well to new data (Haufe et al., 2014; 

Kriegeskorte and Douglas, 2019). We later discuss ways to ensure confidence in an encoding model’s 

ability to represent the underlying neural response (see Interpreting the model weights). Importantly, the 

interpretability of forward models means that they can be used to both identify processing deficits in 

particular clinical groups, as well as understand the underlying neurophysiology. 

Backward models. An alternative to building forward encoding models is to quantify how well certain 

stimulus features can be decoded from the neural activity under different experimental conditions or in 

different subject groups. To do this one can construct a model that maps backwards from brain to stimulus 

(Mesgarani et al., 2009; Ding and Simon, 2012). Such backward models can be used to reconstruct or 

decode the stimulus features from the neural activity; thus, they are commonly referred to as decoding 

models or decoders. However, because these models typically involve optimizing the weighted sum of all 

neural recording channels simultaneously, the resulting decoder weights are difficult to interpret 

neurophysiologically (Haufe et al., 2014; Holdgraf et al., 2017). Despite their shortcomings in 

interpretability, decoders have distinct advantages over encoding models: 1) they do not require pre-

selection of neural channels because each channel is weighted according to how informative it is, 2) 

decoders can utilize independent information on different neural channels to optimally infer stimulus 

features because they operate on the multichannel neural activity, 3) reconstruction accuracy is usually 

higher because decoders project to the stimulus domain where we often have direct access to the ground 

truth (which is not the case for noise-ridden EEG), and 4) decoders can utilize any useful neural 

information that correlates with the stimulus feature, even if that neural activity did not explicitly encode 

that feature (Mesgarani et al., 2009). We recommend linear modeling only for reconstructing continuous 

 
3 In neural systems, the natural flow of information propagates forward from stimulus to brain. Because such 
models describe how information is encoded in the neural activity, they are also known as encoding models. 



   
 

   
 

stimulus features (e.g., speech envelope or spectrogram), and not for reconstructing discrete stimulus 

representations (e.g., phoneme time stamps) which require additional nonlinear transformations (e.g., 

Huth et al., 2016; Zuk et al., 2019). Forward and backward models thus have distinct functions and can be 

employed in a complementary manner to investigate both qualitative and quantitative research 

questions. 

Time lags. An additional design consideration is the range of time delays or lags to include in our model. 

We know from the ERP literature that it takes several hundred milliseconds for sensory information to 

propagate throughout the cortex, with different time lags reflecting different stages of sensory/cognitive 

processing. Including such time lags in our model allows us to capture the dynamics of the temporal 

relationship between the stimulus and the neural response, such that the model can utilize relevant 

information at specific time delays to make better predictions. That means including past stimulus 

information for making predictions about present neural activity (forward models), and future neural 

activity for making predictions about present stimulus information (backward models). We recommend 

using a range of time lags based on the delays at which one expects to see a stimulus-response 

relationship. This can be determined by referencing previous TRF literature (or even ERP literature), or 

empirically by testing model performance using different lags. For cortical responses, this is typically on 

the order of hundreds of milliseconds (e.g., 0 to 300 ms), whereas for auditory brainstem responses this 

is typically on the order of tens of milliseconds (e.g., 0 to 10 ms). For more specific hypotheses, one may 

wish to limit the time delays to early (0 to 150 ms) versus late (150 to 300 ms), or look at performance as 

a function of time using a moving window or single lags (see O'Sullivan et al., 2015; Crosse et al., 2016b). 

For visualization purposes, it is often desirable to include pre- and post-response lags (e.g., −100 to 400 

ms) to show the baseline activity or quantify the noise floor. While using a broader range of lags can often 

yield better predictions, it also increases the number of parameters which increases susceptibility to 

overfitting. However, there are techniques to combat overfitting such as regularization (see Model 

training and testing). 

Subject dependency. The last consideration when designing a linear model is whether it should be 

constructed using individual subject data (subject-dependent model) or data from multiple subjects 

(subject-independent model). Subject-dependent models are more common in the literature because 

their performance is typically better due to inter-subject variability in the neural responses. However, 

when it is not possible to collect enough data per subject or per condition, subject-independent models 

can provide an alternative way of improving model robustness (Di Liberto and Lalor, 2017; Di Liberto et 



   
 

   
 

al., 2018b). Note, this approach assumes a certain level of homogeneity within each subject group4. There 

are numerous ways in which to implement subject-independent models: 1) the model is trained on n−1 

subjects and tested on the data of the held-out subject, 2) the model is trained on all n subjects and tested 

on individual held out trials, 3) a pre-trained subject-independent model is combined with subject-

dependent training data to improve model performance (i.e., transfer learning). For more information on 

how to appropriately partition data for training and testing models, see Model training and testing. 

Example experiment 

For our example experiment, we decide to go with a forward model design for the following reasons: 1) 

we wish to compare EEG tracking of the acoustics and phonetics in speech, hence evaluating them in the 

EEG domain makes for a fairer comparison, 2) we wish to understand any potential group differences in 

speech processing and thus want the model weights to be neurophysiologically interpretable. Based on 

prior work, we expect to see neural responses to the spectrogram and phonemes within 300 ms (Di Liberto 

et al., 2015; Brodbeck et al., 2018). As an initial inquiry, we decide to construct our model with time lags 

between –100 and 400 ms in order to observe the entire TRF timecourse and the pre- and post-TRF 

baseline. For model evaluation, we restrict the time lags to between 0 and 300 ms (based on empirical 

testing) to optimize its ability to predict the neural response. Note, we do not merely truncate the original 

model, but rather retrain the model using this restricted lag range. 

Further considerations 

While utilizing as many relevant time lags as possible often leads to better model predictions, it can 

sometimes obscure differences in neural processing between conditions/groups because such differences 

may occur at specific timepoints along the sensory pathway. For example, if our example clinical group 

differ only in phonetic processing, then it is possible that earlier acoustic processing remains unimpaired, 

and models based on a broad range of time lags will yield only a small group effect or even none at all. 

Using instead a 2 × 2 analysis design, we can examine model performance based on early versus late lags 

within each of the groups as well as any potential interactions that may exist. Alternatively, a single lag 

analysis could be used to examine model performance as a function of time lag for each of the groups. 

 
4 Homogeneity can often be lower in certain clinical populations which may negatively impact the performance of 
subject-independent models relative to that of the control group. As such this should be taken into consideration 
when designing the model. On the other hand, subject-independent models can potentially be used to empirically 
demonstrate such differences in homogeneity.  



   
 

   
 

 

Model training and testing 

Once the design is in place, the model can be trained and tested on the stimulus-response data. Standard 

training procedures typically allocate 70–90% of the data to training (training set) and split the rest of the 

data between validation and testing (validation set and test set). This avoids training and testing on the 

Box 1. Model design implementation. 

Suppose we have a matrix of EEG responses 𝐫, recorded at a sample rate of 𝑓$. To quantify how the 
EEG responded to changes in stimulus feature 𝐬 over a range of time lags [𝜏%&', 𝜏%()], we construct a 
forward model. We can use a regularized least squares approach, such as ridge regression, to quantify 
the forward model weights 𝐰* as follows: 

𝐰* = (𝐒+𝐒 + 𝜆𝐈),-𝐒+𝐫 

where 𝐒 is the design matrix containing the time-lagged stimulus features, 𝐈 is the identity matrix and 
𝜆 is the regularization parameter for controlling overfitting. In practice, we can implement a forward 
model in mTRF-Toolbox by setting the direction parameter Dir to 1 as follows: 

model = mTRFtrain(stim,resp,fs,Dir,tmin,tmax,lambda); 

The function returns a structure containing the model weights (model.w), the corresponding time 
lags (model.t) and other model parameters. The design matrix is automatically generated by 
mTRFtrain() based on the values of tmin and tmax (in milliseconds) and fs (in Hertz). Note, the 
value chosen for lambda should be validated empirically beforehand using an appropriate cross-
validation procedure (for further details, see Model training and testing). 

To construct an analogous backward model 𝐰., we rearrange the equation and apply the time lags to 
the EEG responses instead to produce the design matrix 𝐑 as follows: 

𝐰. = (𝐑+𝐑 + 𝜆𝐈),-𝐑+𝐬 

Backward models are implemented in mTRF-Toolbox using the exact same line of code as above, but 
this time by setting the direction parameter Dir to -1. When the backward direction is specified, 
mTRFtrain() automatically rearranges the equation as above and reverses the time lags to be 
[−𝜏%(), −𝜏%&'] so that the user does not have to recalculate any of the parameters manually. 

As mentioned earlier, the regularization process can act as a low-pass filter, suppressing fast 
oscillatory components (i.e., noise) in the model. A variant of ridge regression, known as Tikhonov 
regularization, does this very well and can be implemented in mTRFtrain() by setting the 
'method' parameter to 'Tikhonov'. 

Additionally, we can implement a series of single-lag models (i.e., models that only map between 
single time points) by setting the 'type' parameter to 'single'. If tmin and tmax are a range 
of values (e.g., [0, 400]), then mTRFtrain() will return a set of models that map between every 
single time lag within that range.  



   
 

   
 

same data, as this would cause the model to overfit to noise in the dataset, producing a poor estimate of 

model performance. The validation set is used for tuning the model hyperparameters, while the test data 

is held out until the end and used to evaluate the final model.  

Model training. When training a model, it is crucial that we validate how well our model generalizes at 

predicting new data. For reliability, it is advisable to obtain multiple measures of model performance using 

a method such as cross-validation; this is a procedure whereby the training and validation sets are rotated 

throughout the dataset, allowing us to evaluate the model on every segment of data (except the held-out 

test set). This is particularly relevant for neural data such as EEG (which are prone to numerous types of 

sparse artifacts), as we wish to avoid validating our model on a bad segment of data that is not reflective 

of the entire dataset. If you are working with contiguous time-series data (e.g., EEG), we recommend 

partitioning the data into shorter contiguous segments for iterative testing. If the data are already split 

into multiple segments or trials (e.g., 20 × 1-minute trials), it can be easier to retain this partitioning and 

perform a leave-one-out cross validation. Note, discontinuous segments or trials of data should not be 

concatenated as data at the discontinuities at trial boundaries will introduce noise into our model. 

Typically, cross-validation is performed on individual subject data, resulting in a subject-dependent model, 

but subject-independent models are also useful in the absence of a sufficient amount of data per subject 

(see Model design). If there are multiple experimental conditions, models must be trained separately on 

data within each condition, irrespective of whether a subject-dependent or independent approach is 

taken. For implementation of data partitioning and cross-validation in mTRF-Toolbox, see Box 2. 

Regularization. It is important to ensure that our model does not overfit to the noise in our training data, 

especially when there is a limited amount of data or the model has a large number of parameters. We do 

this by employing a technique called regularization. Regularization of linear models can be achieved in a 

number of different ways, most of which converge on a similar model solution and yield similar model 

performance (see Wong et al., 2018). A common method known as ridge regression uses a free parameter 

called the ridge parameter to control the correlations between the weights in the model. This smooths 

the model weights by penalizing weights with large values (i.e., the square of the weights), reducing the 

variance and producing a model that generalizes better. A variant of ridge regression, known as Tikhonov 

regularization, imposes a constraint on the first derivative of the model weights which provides temporal 

smoothing and dampens fast oscillatory components in the solution (Lalor et al., 2006; Crosse et al., 

2016a). However, this approach may cause cross-channel leakage for multivariate input features (e.g., 

spectrograms, phonemes etc.) in which case it may be better to use ridge regression. Both methods are 



   
 

   
 

provided as options in mTRF-Toolbox. Another common method known as LASSO and its variants controls 

the number of weights with non-zero values. In practice, regularization takes care of two important issues 

during model fitting: firstly, if a model has many parameters relative to observations and is thus 

susceptible to overfitting, it reduces the amount of non-zero weights or their absolute value to produce a 

model that generalizes better; secondly, neighboring datapoints within both the stimulus and EEG can be 

correlated along multiple dimensions (e.g., space, time, frequency), also known as collinearity, leading to 

spuriously noisy model weights as the model fitting attempts to adjust for highly correlated neighboring 

samples (for an example, see Fig. 7E in Crosse et al., 2016a). 

Model testing. To evaluate model performance, the model is first used to predict a set of output features 

from a held-out set of input features (i.e., the test set). For a forward model, we predict a set of unseen 

neural responses and for a backward model we reconstruct a set of unseen stimulus features. For subject-

dependent models, the test set is typically a single segment or trial of data from that same subject. For 

subject-independent models, the test set can be either 1) multiple segments/trials of data from some 

held-out subject or 2) an individual segment/trial of data from a subject whose remaining trials are 

included in the training set (see Subject dependency section in Model design). The latter approach will 

likely yield better performance due to the inclusion of subject-specific data in the model. 

We then evaluate model performance by calculating a predictive score based on the similarity (or error) 

between our prediction and the original signal (i.e., ground truth). It is common to use Pearson’s 

correlation coefficient as a measure of similarity because it quantifies how linearly close the dynamics of 

the prediction are to the ground truth, irrespective of the magnitude or mean of the signal being 

predicted. In the event that the relationship between the predicted and original signals is not linear, a 

Spearman’s correlation can instead be used. It is also common to measure the error (i.e., the absolute 

distance) between the predicted and original signals. Standard error metrics include the mean squared 

error or mean absolute error which, unlike correlations measures, rely on the absolute magnitude of the 

signals. For implementation of model testing in mTRF-Toolbox, see Box 2. 

Example experiment 

We start by concatenating all our spectrogram frequencies, S, and all our phonetic features, F into a joint 

encoding model, FS. We then map this FS speech representation to each EEG channel (i.e., we fit a TRF 

model) using a leave-one-out approach (each trial contained one minute of an audiobook, and there were 

breaks in between trials). This will allow us to see how well each TRF can predict the data in the left-out 

trial. We can iterate through all trials as test trials to get a sense of the model’s validity across all of our 



   
 

   
 

data. For each iteration, we use ridge regression with leave-one-out cross-validation, using the trials 

selected for training to identify the optimal ridge parameter. We carry out this procedure separately for 

any feature models we intend to evaluate and compare (F, S, and FS). In our example experiment, in the 

absence of any strong hypothesis about lateralization (Hickok and Poeppel, 2007), we average prediction 

accuracies across EEG channels in order to evaluate the performance of the models.  

Further considerations 

Memory usage issues might occur if you are working with very large segmentations of the data or long 

trials. If the trials used are too long (e.g., five-minute trials), you can use the 'split' parameter in 

mTRFcrossval() to chop them into smaller segments in order to reduce memory usage (see also the 

'fast' parameter for efficient memory usage). Because of the efficient cross-validation procedure 

employed by mTRFcrossval(), increasing the number of folds does not greatly increase computation 

time5.  

In addition, the researcher can specify a smaller correlation window size (e.g., 20 seconds) to obtain 

multiple measures per fold. Note, reducing the window size below a certain threshold (typically <10 s) will 

begin to reduce the average correlation value and also cause spuriously high and low estimates. However, 

this feature may be useful for researchers interested in real-time decoding applications such as brain-

computer interfaces (BCIs), and such spurious correlation estimates can be managed over time by using 

Bayesian filtering techniques such as fixed-lag state-space models (Miran et al., 2018).  

 
5 This is achieved by summing the covariance matrices across all trials only once at the beginning, storing the trial-
specific covariance matrices in memory and iteratively subtracting each of them from the sum on every fold. 



   
 

   
 

 

Box 2. Model training and testing implementation. 

Suppose we want to train a backward model with time lags [𝜏%&', 𝜏%()]	to reconstruct particular 
stimulus features from EEG responses recorded at a sample rate of 𝑓$. We must first partition our 
stimulus and response data into separate training and test sets. In mTRF-Toolbox, the user can 
partition continuous data into any number of folds and specify one of these folds to be allocated for 
testing. For example, we can create 10 folds (9 training, 1 test) and specify fold 5 as our test set as 
follows: 

[sTrain,rTrain,sTest,rTest] = mTRFpartition(stim,resp,10,5); 

where stim and resp are matrices of continuous data from a single subject. The output variables 
sTrain and rTrain are returned as 9-by-1 cell arrays containing the training set, and sTest and 
rTest are matrices containing the test set. Note, if the data were recorded as separate trials and are 
already stored as cell arrays, this step can be skipped.  

We then conduct a cross-validation procedure on the training set to identify the optimal value for the 
regularization parameter 𝜆 as follows: 

cv = mTRFcrossval(sTrain,rTrain,fs,Dir,tmin,tmax,lambda); 

The function returns a structure containing the cross-validation statistics such as the correlation 
coefficient (cv.r) and the mean squared error (cv.err). Here, the regularization parameter 
lambda is a vector of values (e.g., 10.^(-6:2:6)) over which we cross-validate our model. We set 
the direction argument Dir to -1 to implement a backward mapping. To determine the optimal 𝜆 
value, we average the performance metrics across folds, and take the 𝜆 corresponding to the 
maximum correlation value (or minimum error value): 

[rmax,idx] = max(mean(cv.r)); 

where rmax is the maximum correlation and idx is the index of the 𝜆 value that yielded rmax. Note, 
if the stimulus features are multivariate, then the researcher will have to decide how to consolidate 
the data, e.g., take the mean or max across features (see also the banded ridge method in Comparing 
different stimulus features). We then use this lambda value to train our final model as follows: 

model = mTRFtrain(sTrain,rTrain,fs,Dir,tmin,tmax,lambda(idx)); 

where model is a structure containing the relevant model parameters (see Box 1). We then test our 
model on the held-out test set as follows: 

[pred,stats] = mTRFpredict(sTest,rTest,model); 

where pred is a matrix of the predicted stimulus features (or EEG responses for a forward model) 
and stats is a structure containing the test statistics (stats.r, stats.err). 
 



   
 

   
 

Evaluating model integrity 

While the use of encoding/decoding models is well established in cognitive neuroscience and has been 

shown to reliably quantify different sensory and cognitive processes, it is still paramount that we assess 

the integrity of each individual participant’s model before proceeding with our analysis. There are 

numerous factors that could lead to the construction of a model that does not reflect a meaningful 

stimulus-response relationship: 1) excessive noise in the neural data, caused by movement or external 

interference (see EEG preprocessing), such that it overwhelms the neural response to the stimulus, 2) poor 

subject compliance due to lack of motivation or fatigue, resulting in the subject perceiving little or no 

information, 3) certain subjects can exhibit inherently weak responses on the scalp to certain stimuli due 

to various anatomical reasons. Thus, it is critical to establish from the outset that a given participants’ 

model is meaningful and performing well above chance level. 

Establishing data integrity. We have previously described our plan to construct a forward model in order 

to quantify the neural tracking of acoustic and phonetic features. But is the SNR of our EEG data good 

enough to address such research questions? Before constructing our forward model, and as a first pass to 

assess whether the EEG responded to changes in the stimulus, we recommend first using a backward 

model to reconstruct a continuously time-varying stimulus feature that is known to be reliably tracked by 

the EEG signal. For example, we suggest using the speech envelope of the audio recording as it serves as 

a good proxy for the stimulus intensity. The reason we recommend this initial backward modelling step is 

that it is better able to detect the presence of neural tracking of the stimulus than forward modelling; as 

previously mentioned, backward modelling has the distinct advantage of utilizing all the available EEG 

channels simultaneously, as well as projecting to the stimulus domain where we typically have direct 

access to the ground truth (unlike noise-ridden EEG). If the accuracy of the resulting reconstruction is 

above chance, then we can then claim that the EEG contains genuine information relating to the desired 

stimulus feature. 

Defining the null distribution. Quantifying chance-level performance of encoding/decoding models is 

non-trivial. For any statistical test, defining the null distribution makes inherent assumptions about the 

distribution of the data. Thus far, we have suggested validating the model prediction using Pearson’s 

correlation coefficient, but unfortunately the standard statistical tests for correlation are not appropriate 

to determine if neural tracking is above chance. This is because they usually assume independent samples, 

but EEG data and naturalistic stimuli will typically exhibit a high correlation between neighboring time 

points or channels/features meaning adjacent samples are not independent. Instead, we recommend 



   
 

   
 

computing a null distribution of prediction accuracies using randomly shuffled permutations of the data 

at hand (Nichols and Holmes, 2002; Combrisson and Jerbi, 2015). This process involves random pairings 

of EEG responses to stimulus representations (for example, by shuffling the trial label). Note, however, 

that significance testing using this null distribution is only as sensitive as the number of trials. For example, 

10 trials will produce at most 100 pairings, and randomly selecting 1000 pairings will produce several 

repeated pairings.  

Alternatively, if the trials are sufficiently long or if there were not enough trials to get a null distribution 

of random pairings, one can (randomly) circularly time shift the stimulus relative to the reconstruction. 

This maintains the temporally correlated structure of both the stimulus and the reconstruction, while 

eliminating the phase relationship between the stimulus and reconstruction (Bialek and de Ruyter van 

Steveninck, 2005). One downside of this approach is that it does not account for time-locked responses 

that are present in all trials (such as an evoked response at the start of the trial) and could produce a false 

positive if the uniqueness of the reconstruction is of interest. Additionally, discontinuities introduced by 

circular shifting (if the start and end points of the signal are very different) can produce inappropriate null 

distributions (Harris, 2020), but this issue is somewhat minimized by high-pass filtering the data (see EEG 

preprocessing). The experimenter should decide on the most appropriate method for creating a null 

distribution, based on the experiment design and the number and duration of the stimuli. 

Quantifying significance. Once a null distribution has been defined, we can then calculate a p-value for 

an individual participant’s model by averaging their performance measures (e.g., correlation coefficients) 

across trials and quantifying the proportion of the null distribution that falls above their average 

performance value (i.e., a one-tailed test). Alternatively, to account for the variability in true correlations, 

we can compute a measure of sensitivity known as d-prime (d') which is computed as follows (see also 

Figure 3): 

𝑑/ =
𝜇0123 − 𝜇'244

612 (𝜎
5
0123 + 𝜎5'244)

 

To calculate significance for a group of participants, we take the average of each participant’s null 

distribution and compare that sample of null correlations to a sample of true correlations using an 

appropriate means test. 



   
 

   
 

Example experiment 

Before testing for neural differences between our dyslexia and control groups, we wish to verify the 

general integrity of our data, i.e., whether we can reliably detect neural responses to the stimulus in the 

EEG data. We use backward modeling to derive a mapping from the 128-channel EEG data to the speech 

envelope for each trial. Using the same time-lags we selected for our forward model (0–300 ms), we 

conduct a leave-one-out cross-validation to compute the average reconstruction accuracy. We assess the 

significance of our model’s performance against a null distribution derived from random permutations of 

the data. Because our observed reconstruction accuracy is above the 95th percentile of the permuted 

reconstruction accuracies, we conclude that the stimulus can be decoded better than chance and move 

forward with our main analysis. 

Next, we’ve chosen to evaluate our F, S, and FS models averaged across all EEG electrodes (Figure 1). We 

evaluate the models by averaging their prediction accuracies and perform the same permutation 

procedure on that average, randomly shuffling trials to generate a null distribution. Because all three 

models perform better than chance, we conclude that acoustic and phonetic features were reliably 

encoded in the EEG data. However, we know that acoustic and phonetic features are highly correlated in 

speech. Next, we will disentangle the relative contributions of these different stimulus features.  

Further consideration 

In addition to running an initial backward model analysis to assess data integrity, one could also include a 

short ERP study before the main experiment. This could consist of very simple stimuli such as flashes or 

beeps, depending on the modality of interest. While not a direct measure of continuous stimulus tracking, 

it would give the experimenter some idea of the quality of their data independent of the modelling 

analysis which, when performed incorrectly, can produce poor results despite the data potentially being 

of good quality. Another advantage to this approach is that there are ways to rapidly analyze ERPs online 

and establish data quality early on in the experiment. This can help in deciding whether to continue 

running the entire study on a given participant or terminating it early to save you both time. 



   
 

   
 

 

Comparing different stimulus features 

One of the strengths of using linear models is the ability to define multiple stimulus representations, such 

that we can target specific stages of processing along the sensory/cognitive pathway. While we can 

directly compare the performance of various models constructed using the different stimulus features, it 

is likely that such features contain overlapping information along one or more dimensions leading to 

redundancy between the corresponding models. However, it may be necessary to quantify the unique 

contribution of a specific feature if the experimenter is interested in obtaining a measure of something 

like speech-specific processing. There are multiple ways of approaching this problem. 

Combining stimulus features. This approach first quantifies the combined contribution of multiple 

features by concatenating them together along the columns of the design matrix and constructing a 

“combined” model (see Fig. 1A; Di Liberto et al., 2015; O’Sullivan et al., 2017; Desai et al., 2021). To 

evaluate whether an individual stimulus feature contributes unique information, separate models are fit 

using the individual features and the difference in prediction accuracy between the combined model and 

the individual models is computed. While this is an indirect way to quantify such unique contributions, it 

Box 3. Model evaluation implementation. 

Regression models are typically evaluated using correlation or error metrics. In mTRF-Toolbox, we can 
compute such metrics for a forward or backward model using the ground truth y and the model 
prediction pred as follows: 
 
[r,err] = mTRFevaluate(y,pred); 
 
where r is the Pearson correlation coefficient and err is the mean squared error (MSE). Alternatively, 
we can specify a Spearman correlation using the 'corr' input argument and the mean absolute 
error (MAE) using the 'error' argument. The mTRFevaluate() function is automatically called 
by other functions in mTRF-Toolbox such as mTRFpredict() and mTRFcrossval() for 
computing such performance metrics.  
 
In order to evaluate whether such performance metrics are statistically significant, we can use a 
permutation-based approach which cross-validates models using mismatched permutations of the 
stimulus features and neural responses. In mTRF-Toolbox, this can be implemented as follows: 
 
stats = mTRFpermute(stim,resp,fs,Dir,tmin,tmax,lambda); 
 
The function returns a structure containing the usual cross-validation statistics such as the correlation 
coefficient (stats.r) and the mean squared error (stats.err). An optional input argument 
'nperm' can be used to specify the number of permutations to perform. 
 
 



   
 

   
 

has been shown to be predictive of behavior (Di Liberto et al., 2018a). Note, when combining multiple 

stimulus features in a single matrix, regularization may not affect the features equally, especially if the 

frequency content differs between the features (see Further Considerations below). In general, this 

method is more suited to forward modelling because it is easier to compare the performance of different 

stimulus feature models in the EEG domain than in the stimulus domain; certain stimulus features may 

consist of features which are difficult to reconstruct (e.g., sparse binary representations), requiring 

additional non-linear transformations. 

Partialling out contributions. A more direct way to deal with common brain activations produced by 

redundant stimulus features is to partial them out of the EEG data (O’Sullivan et al., 2021). The residual 

EEG signal can then be mapped in a forward or backward direction to the other stimulus features (i.e., the 

features that were not regressed out of the EEG) in order to define a model that captures the neural 

dynamics unique to those features. Vice versa, the same procedure can then be implemented for the 

other set of features. Depending on how much overlap there is between the two sets of features 

(temporal, spectral etc.), the residual EEG may contain considerably less information about the other 

stimulus set after the first has been partialled out, resulting in very low prediction accuracy scores. 

However, the absolute value of the prediction accuracy is not often not of great importance; for example, 

when comparing different subject groups or experimental conditions, we are often more interested in the 

prediction accuracy score relative to that of another group or condition. 

Example experiment 

Our original hypothesis was that there should be group differences in phonological but not acoustic 

processing. We have already determined how well we can predict data using a speech representation that 

includes the combined acoustic and phonetic features, i.e., FS (see Example experiment section in 

Evaluating model integrity). Following that, we aim to predict the data on the same channels using mTRF 

models fit to the spectrogram (S) representation alone. Then, by subtracting those S predictions from the 

FS predictions, we can determine by how much the EEG predictions were improved when including 

phonetic (F) features along with the spectrogram (S). Conversely, we can isolate a measure of acoustic 

processing by seeing how much the FS representation outperforms an F representation alone. In our 

experiment, we are particularly interested in testing the hypothesis that FS–F (quantifying acoustic 

processing) is similar for both groups, but that FS–S (quantifying phoneme processing) is larger for our 

control group than the dyslexia group (Fig. 2A). This pattern of results would be consistent with our 

hypothesis that there is a specific impairment in phonological processing in our clinical group. We do this, 



   
 

   
 

being careful to regularize each model separately for each subject to optimize its performance using all 

EEG channels. 

Further considerations 

In the original study from which our example experiment is based (Di Liberto et al., 2018b), some 

additional analyses were based on subject-independent models, calculated based on an average across 

subjects. For each group, data from all subjects but one was combined to derive a single TRF and used to 

predict the EEG signal of the held-out participant. Figure 3 shows the EEG prediction correlations of the 

subject-independent models fit for S, F, and FS. The main result is that the control (CTR) and dyslexia (DX) 

groups showed different spatial patterns in prediction accuracies. While there was an overall reduction of 

that metric in dyslexia, the correlations also increased over some scalp areas, pointing to an atypical 

processing rather than simply reduced processing or increased inter-subject variability. Furthermore, the 

atypical processing was most pronounced for FS, with further analyses (not shown) revealing a correlation 

between FS−S and behavioral scores of phonological awareness and memory. 

When estimating multiple-feature models, such as our FS model described above, with ordinary 

regularization methods (e.g., ridge), the use of a single regularization parameter may lead to sub-optimal 

model fits and poor predictions. This is because they assume the same level of regularization across all 

feature types (e.g., spectrogram, phonetic features). The amount of regularization required for each 

feature can vary depending on several factors such as frequency content, magnitude of the stimulus 

vector, stimulus sparsity, and EEG SNR. In our FS model, we have two markedly different types of speech 

features; the spectrogram is represented as a continuous value across 32 frequency bands while phonetic 

features are discrete, binary variables across 19 different phonetic features. As such, in our example, we 

can fit a combined encoding model while applying separate levels of regularization to each feature type 

(known as banded ridge regression): one “band” for the spectrogram and one for the phonetic features 

(see Box 4). This approach has the added benefit of reducing spurious correlations between features. Fit 

separately, single-feature models may produce prediction accuracies that are over-estimated due to 

correlations between the features. Banded ridge regularization can reduce this problem by “decorrelating 

the model features to an amount determined by their covariance and the regularization parameters” 

(Nunez-Elizalde et al., 2019). We can fit a combined model (FS) with banded regularization parameters 

and then evaluate the prediction accuracy of each individual feature (F or S) separately using the model 

weights estimated by the combined model (for more detail see Nunez-Elizalde et al., 2019). 



   
 

   
 

 

Box 4. Comparison of stimulus features implementation. 

In order to compare between the unique contributions of different stimulus features to the observed 
brain activity, we must account for statistical and perceptual redundancies between those features. 
As outlined in this section, one way to do this is to compute the difference in performance between 
combined and individual feature models. A more direct method involves partialling out the 
contribution of one set of features from the EEG data, then modelling the relationship between 
another set of features and the residual EEG. In mTRF-Toolbox, we can implement this partialling 
procedure and obtain the residual EEG responses as follows: 
 
resid = mTRFpartial(stim,resp,fs,Dir,tmin,tmax,lambda); 
 
As discussed in this section, we have adapted banded ridge regression as described in Nunez-Elizalde 
et al. (2019). In short, this function performs leave-one-out cross-validation while applying different 
levels of regularization separately to “bands” of stimulus features. Suppose we wish to apply 2 bands 
of regularization to a stimulus representation that has 10 features, with 5 features per band. First, we 
define the range of regularization values for each band and how we wish to group the features in each 
band: 
 
band1 = 10.^(-6:2:6); 
band2 = 10.^(0:2:12); 
lambda = [band1;band2]; 
grouping = [1,1,1,1,1,2,2,2,2,2]; 
 
Then we perform our banded regularization in mTRF-Toolbox as follows: 
 
cv = mTRFcvbanded(stim,resp,fs,Dir,tmin,tmax,lambda,grouping); 
 
The function returns a structure containing the usual cross-validation statistics. It is important to 
consider that the computation time grows exponentially with the number of bands in an exhaustive 
search (𝑁67!"#$%). However, the cross-validation procedure can be optimized via the search algorithm 
in MATLAB, which is implemented in the following mTRF function: 
 
cv = mTRFcvsearch(stim,resp,fs,Dir,tmin,tmax,grouping); 
 
Note that lambda is no longer a required input. Instead, it is an optional parameter, 'init', which 
specifies an initial lambda value for each band (default value is 1). Additionally, if 'grouping' is 
omitted, the function performs the standard (single-band) cross-validation described in Box 2 via the 
search algorithm. 



   
 

   
 

 

FIGURE 2 | Graphical depiction of expected results for example clinical study using forward model approach. (A) 

We hypothesize that there is a deficit in the neural processing of phonetic features in the dyslexia group (DX) relative 

to our control group (CTR). By looking at the differential in prediction score (Pearson’s r) between the combined 

model (spectrogram and phonetic features, FS) and the spectrogram alone (S), we would expect to see a larger effect 

in the control group, indicating a larger contribution of phonetic features to the FS model performance in controls. 

In contrast, when we compare FS to a model with only phonetic features (F), there should be no significant difference 

in the difference in prediction accuracies. (B) Hypothetical group differences in average TRF weights. The average 

TRF weights for the control group is shown as the black trace. One possible scenario shows a reduction in TRF 

amplitude for the dyslexia group (red trace), which could indicate either reduced neural activity or increased inter-

subject variability. Alternatively, there could be a difference in TRF latency (blue trace), due to delayed neural 

processing. This specific effect has been observed in a previous study quantifying semantic processing in older adults 

(Broderick et al., 2021). 



   
 

   
 

 

FIGURE 3 | Group differences in distribution of forward model prediction scores. Scalp topographies of prediction 

scores (Pearson’s r) for control (CTR) and dyslexia (DX) groups using subject-dependent forward models (adapted 

from Di Liberto et al., 2018b). These results show that there are differences in prediction score, as per our hypothesis, 

but also that there can be differences in the distributions of those scores across the scalp. 

Interpreting the model weights 

One of the major advantages of using linear models is that their weights are easy to interpret, a property 

that is highly desirable when studying physiological systems. In this section, we discuss interpretation in 

the context of forward and backward models, model generalization, as well as presenting simulations that 

demonstrate the impact of data quantity and signal-to-noise ratio (SNR) on prediction score. 

Forward model. The analysis and interpretation of forward model weights are similar to that of an ERP, 

although a few caveats should be noted. Firstly, a forward model is not an ERP because its weights are 

fitted to optimally predict EEG data, thus, the relationship between the weights is mathematically relevant 

by design (Kriegeskorte and Douglas, 2019). Forward models trained on naturalistic stimuli produce 

convincing representations of neural responses with similarities to ERPs (Lalor et al., 2006; Lalor et al., 

2009), but correlations between stimulus parameters can affect this interpretation. Secondly, if our goal 

is to capture the underlying neural response using linear modeling, we have to ensure that the model 

generalizes well at predicting new data. Both the model’s approximation of the underlying response and 

its performance vary as a function of SNR and the amount of available data. As such, it is crucial to evaluate 

the model’s predictive power prior to interpreting the model weights. It can be tempting to interpret 

specific temporal or spatial features of the model weights as reflecting something interesting about the 

underlying brain activity, particularly when they appear to satisfy our preconceived notions or hypotheses 



   
 

   
 

regarding brain function. However, if a model has no predictive power, then it is likely overfit to noise in 

the data.  

Backward model. While it is possible to quantitatively compare patterns of backward model weights 

across multiple experimental conditions (e.g., Crosse et al., 2015), it is not recommended to visualize or 

interpret such patterns in a qualitative manner or through the lens of neurophysiology. As previously 

stated, the weights corresponding to backward models are not physiologically relevant because they map 

in the acausal direction, i.e., in reverse to the natural flow of information of the system under study. 

However, there are transformations that can be applied to backward models in order to observe the 

corresponding forward representation (see Haufe et al., 2014). In mTRF-Toolbox, the function 

mTRFtransform()allows the researcher to perform this transformation in one line of code (see Box 

5). Note, we strongly recommend using the resulting transformed model merely for the purpose of 

interpretation, and not for predicting neural responses to novel stimuli. There is no guarantee that the 

resulting forward model from the transformation is sufficiently regularized and optimal for EEG 

prediction.  

Simulations. To demonstrate this issue of model performance and interpretability as a function of SNR, 

we conducted a series of linear modeling analyses on simulated EEG data with a frequency range relevant 

to speech tracking (2–15 Hz, roughly theta to beta). For each simulation, we: 1) randomly generated a 

time-varying ‘stimulus’ in this frequency range and convolved it with the expected TRF, 2) added noise 

with approximately the same spectrum as EEG, and 3) trained and tested the model using a leave-one-

trial-out procedure, where each trial was one minute long. Each simulation was run 100 times. Based on 

these simulations, we show that model performance improves with more data and when the data are less 

noisy (i.e., higher SNR), and thus the resulting model has a high correlation with the true response (Fig. 

4A). As the amount of data or the SNR decreases, both the model performance and the model fit drop. 

Note that ‘noise’ in these simulations refers to any component that does not track the stimulus. 

Practically, this includes external mechanical and electrical noise as well as uncontrollable factors such as 

neural activity from other brain regions and processes that are not of interest. 

Collapsing the results across SNR and data quantity, we see a direct relationship between the reliability of 

the model’s representation of the true response and the prediction score (Fig. 4B). Here we use a d-prime 

measure, which is quantified relative to a null distribution produced by randomly circularly shifting the 

trials (see the section Evaluating model integrity). When the prediction accuracy is low, the model is a 

poor representation of the true response, and this increases with prediction accuracy. More specifically, 



   
 

   
 

the correlation between the predicted and true model plateaus for d-prime prediction accuracies around 

2, and the model is often (> 90% of the time) a reliable representation of the true response (Figure 4B, 

see also Figure 4C, D, and E for example simulations).  

Thus, we strongly recommend examining prediction accuracy before interpreting model weights. Even 

with an experimental setup with low electrical noise and well-behaved subjects, SNR can vary across 

subjects due to differences in cortical folding or the relative activity in other brain regions that are not of 

interest. Additionally, when the data are particularly noisy, it is possible to get a poor TRF estimate, even 

with a lot of data (Figure 4B, C). For this reason, we also recommend having at least 10 subjects in the 

experiment since TRF estimates can be somewhat variable, even at high SNRs.  

Example experiment 

So far, we have compared the control and dyslexia groups based on prediction accuracy (see Model 

comparison for different stimulus features). It is also possible that there will be differences in the evoked 

responses to the different features, which will be captured by the model weights themselves. Differences 

might manifest as a change in magnitude or a change in delay of the peaks and troughs in the TRF (Fig. 

2B). For simplicity, our focus will be on a TRF representing one stimulus feature, but this approach can be 

extended to examine multiple stimulus features. 

To study the TRF weights in our example, we carried out a two-step procedure. First, we identified time-

lags with TRF weights that were significantly different from zero within each group. We used a Wilcoxon 

test with FDR-correction, but this analysis could also be conducted, for example, with a cluster mass 

statistics method (Maris and Oostenveld, 2007). Then, similar statistical methods were used to evaluate 

between-group effects. In our example experiment, we observe no between-group differences between 

any acoustic weights, but we observe between-group difference in the phonetic features’ weights at time 

lags around 200 ms.  

An alternative data-driven approach consists of performing a cluster analysis on the TRF weights to 

identify clusters with significant TRF components. While a single 2D cluster analysis (EEG channel x time-

lag) is sufficient for univariate inputs, multiple 2D cluster analyses should be run when multiple speech 

features have been included in the model. The analysis can then be carried out for each cluster by 

averaging each set of electrodes or by focusing on the centroid channel of each cluster. 



   
 

   
 

 

Box 5. Backward to forward model transformation. 

Suppose we want to train a backward model with time lags [𝜏%&', 𝜏%()]	to reconstruct particular 
stimulus features from EEG responses recorded at a sample rate of 𝑓$. We would first optimize the 
regularization parameter λ using a cross-validation procedure as outlined in Box 2. Once complete, we 
can train our backward model in mTRF-Toolbox as follows: 
 
bmodel = mTRFtrain(stim,resp,fs,Dir,tmin,tmax,lambda); 
 
Aside from using our backward model for decoding purposes, we may wish to gain a deeper insight 
into the underlying neurophysiology of the related brain activity. While we cannot directly interpret 
the weights of our backward model in its current from, we can transform it into the corresponding 
forward model as described in Haufe et al. (2014) using the mTRF-Toolbox: 
 
fmodel = mTRFtransform(bmodel,resp); 
 
The function returns a structure fmodel containing the same model parameters as those returned 
by mTRFtrain (), except for the bias term. Thus, the resulting model cannot (and should not) be 
used for prediction. For that, we recommend directly constructing an optimized forward model. 
 



   
 

   
 

 

FIGURE 4 | We simulated data containing a TRF-based response with added EEG-shaped noise. Both were filtered 

between 2–15 Hz. Each simulation was re-run 100 times with new noise and a new randomly generated stimulus 

using different SNRs (ratio of response to noise root-mean-squared) and a different number of trials (each trial is 1 

min long). (A) Leave-one-trial-out procedure was used to quantify prediction accuracy of the trials, and for each 

simulation we averaged prediction accuracies across trials. Shown are the median correlations between the true TRF 

and the optimal modeled TRF across simulations, and similarly shown are the median prediction accuracies across 

simulations. Both prediction accuracy and the model estimate of the true TRF decrease with increasing amount of 

noise and decreasing number of trials. In light of this, we collapsed the data across conditions plotted the relationship 

between prediction accuracy and model TRF to true TRF correlation across simulations (B). d-prime prediction 

accuracy was used to normalize for differences in the null distribution, which can vary with the frequency range of 



   
 

   
 

the data. Shown for each condition are the median (solid line) and the 10– 90% quantiles (dashed lines). As prediction 

accuracy decreases, the model estimate of the true TRF gets less reliable. (C, D, E) Shown are example stimulations 

with poor, moderate, and good estimates of the TRF, respectively (C: −45 dB SNR, 64 minutes; D: −25 dB SNR, 4 

minutes; E: −20 dB SNR, 64 minutes). The root-mean-square of the estimated TRFs were normalized in this plot to 

match the true TRF. The d-primes and correlations between the true and predicted model for each simulation have 

also been labeled in B using the same colors of the traces in C, D, and E.  

What can go wrong? 

Small Datasets and Regularization 

The first step of fitting a model is identifying the optimal regularization parameter (see Model training and 

testing). A simple and common approach to identify the optimal regularization parameter(s) is to do an 

exhaustive search within a certain range of values. While an exhaustive search can be costly for multiple 

parameters, it can be feasible in the case of a single parameter, such as λ for ridge regression. The optimal 

λ value can be selected so that it optimizes the prediction score, which could be, for example, the EEG 

prediction correlation or the prediction MSE. 

The optimal λ value may differ across subjects (or sessions), as it depends on factors such as the SNR. For 

this reason, the λ tuning is usually performed on individual subjects. However, this approach can be 

problematic when working with small datasets. Consider, for example, an EEG dataset with n = 20 

participants, each with only 3 minutes of data. It is possible that such a small amount of data is not 

sufficient to fit generalized models that can reliably predict new EEG data. In other words, there may be 

particular λ values producing models that are better than others, but there may not be enough EEG data 

to reliably assess the quality of those models. This issue may prevent us from deriving reliable models at 

the individual-subject level with the abovementioned standard exhaustive search. One possible solution 

is to identify a suitable denoising procedure to increase the SNR, which would increase the reliability of 

the prediction score. If that is not possible or sufficient, it may be possible to improve the model fit by 

including additional assumptions. For instance, if we assume the EEG responses for individuals within the 

same group is similar, data from all participants can be combined into a single dataset to determine a 

unique regularization parameter. This could be implemented in different ways that depend on particular 

assumptions and the dataset (e.g., should the EEG data be normalized before it is combined between 

subjects? How are the data combined?). The researchers may then decide to use the resulting lambda to 

study the TRFs at the group level or to restrict the parameter search at the individual subject level. 



   
 

   
 

Poor parameter selection 

Consider the scenario where a researcher wants to assess auditory processing in a particular cohort of 

interest using a music listening paradigm. Before doing so, they plan to first validate their analysis pipeline 

on a publicly available dataset (Di Liberto et al., 2020). In this study, EEG data were recorded while 20 

participants listened to ten monophonic piano melodies from Bach, each occurring three times, and 

presented in random order. The researcher aims to fit envelope TRFs on all participants and verify that 

they exhibit the typical characteristics of an auditory TRF that were shown in previous research.  

The team decides to select the following parameters: a) The EEG frequency-band 1-30 Hz; b) The time-lag 

window [–100, 400], which should be sufficient to capture the expected responses between about 20 and 

250ms; and c) The range of possible regularization values [1, 10, 102, 103, 104, 105]. As for our indications, 

the team first examined the EEG prediction correlation values (Figure 5A). The values were of the order 

of 0.025, so not particularly large, but significantly larger than zero. Thus, they decide to move to the next 

step and interpret the TRF weights (Figure 5B). The resulting TRF shows two slow “components”: One 

arising before 0 ms lag and terminating around 200ms; The other is a sustained response with inverse 

polarity that starts at 200ms. This may appear as an interesting result, potentially reflecting the predictive 

nature or music perception. However, the response looks too smooth compared with previous results and 

they decide to double-check why that is the case. In doing so, they realize that the selected optimal 

lambda always had the minimum value in the search interval (Figure 5C). They then extended the search 

to a broader interval from 10-7 to 105 (logarithmically spaced), verifying that the optimal lambda was 

within that interval and not at its border for all subjects (Figure 5F). As a result, they found much larger 

EEG prediction correlations (~0.05; Figure 5D) and obtained TRFs that match their initial expectation 

(Figure 5E). 

The team’s first pass of optimizing the model (Figure 5A, B, C) is a classic example of poorly choosing the 

free parameter. The issue is not necessarily due to the choice of lambda values, but it is rather due to a 

missing initial check on the tuning curve. It is important to ensure that the tuning curve has reached a 

plateau before stopping the parameter search. 

 



   
 

   
 

 

FIGURE 5 | Misinterpreting the TRF result because of poor regularization. (A) EEG prediction correlation, averaged 

across all channels, when the optimal lambda was determined within the interval [0.1, 105]. Error bars indicate the 

SEM across participants. (B) TRF weights of the corresponding model for individual electrodes. Darker colors indicate 

electrodes in a progressively more posterior position. (C) Tuning curve for the regularization parameter λ averaged 

across participants. The optimal lambda was the minimum value in the search interval 0.1. (D, E, F) Results when the 

lambda search was performed in the larger interval [10−7, 105]. The optimal lambda was 10−3. 

Conclusion 

Linear modeling allows researchers to both interpret and quantify the reliability of neural tracking to 

continuous stimuli. We have provided an example experiment throughout in which linear models might 

be used to study phonological processing in a subject group with dyslexia. This experiment also highlights 

how comparisons of EEG prediction accuracy between two models can be used to quantify the 

information provided by an additional feature relating to the speech, such as phonological content. The 

mTRF-toolbox provides all of the tools needed to do linear modeling and address questions of neural 

response reliability and comparisons between models. Further details can be found in a previous 

manuscript (Crosse et al., 2016a), but here our aim was to detail other steps of experiment design, 

preprocessing, and interpretation when linear modeling is used to test hypotheses in applied research. 

Computational cognitive neuroscience is a rapidly advancing field. We have focused on linear modeling 

because of our experience with this technique and because it is a simple method with which one can 



   
 

   
 

produce interpretable models from continuous and naturalistic stimuli. But it is of course not the only 

method of neural data analysis. The relative utility of linear models versus nonlinear models (which 

assume a nonlinear relationship between stimulus properties and the neural response) is an active area 

of debate (Ivanova et al., 2020). Furthermore, deep neural networks have shown promise for generating 

artificial neural responses that mimic the processing stages of sensory systems in the brain (Yamins and 

DiCarlo, 2016; Richards et al., 2019). Depending upon the research questions, we think more complex, 

nonlinear models can also be useful for clinical research, and as such they are worth paying attention to 

in the near future. Still, linear models provide a more direct bridge between the controlled experiment 

design of previous work and machine-learning-based analyses that work for experiments with continuous 

stimuli and multiple time-varying features of interest (Holdgraf et al., 2017). Because of this, linear models 

will remain important as the field of cognitive neuroscience continues to advance, and we look forward 

to these advances. 

Code availability 

The latest code for the mTRF-Toolbox, including sample demos and data, can be found on GitHub 

(https://github.com/mickcrosse/mTRF-Toolbox). The code for the simulations used to create Figure 4 can 

also be found on GitHub (https://github.com/natezuk/mTRF-Toolbox-simulations).  

Acknowledgements 

We would like to thank Andrew Anderson for his comments and suggestions on this manuscript. 

References 

Bialek, W., and De Ruyter Van Steveninck, R.R. (2005). Features and dimensions: Motion estimation in fly 
vision. arXiv preprint q-bio/0505003. 

Brodbeck, C., Hong, L.E., and Simon, J.Z. (2018). Rapid transformation from auditory to linguistic 
representations of continuous speech. Current Biology 28, 3976-3983. e3975. 

Broderick, M.P., Di Liberto, G.M., Anderson, A.J., Rofes, A., and Lalor, E.C. (2021). Dissociable 
electrophysiological measures of natural language processing reveal differences in speech 
comprehension strategy in healthy ageing. Scientific reports 11, 1-12. 

Carandini, M., Demb, J.B., Mante, V., Tolhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J.L., and Rust, N.C. 
(2005). Do we know what the early visual system does? Journal of Neuroscience 25, 10577-10597. 

Combrisson, E., and Jerbi, K. (2015). Exceeding chance level by chance: The caveat of theoretical chance 
levels in brain signal classification and statistical assessment of decoding accuracy. Journal of 
neuroscience methods 250, 126-136. 

Crosse, M.J., Butler, J.S., and Lalor, E.C. (2015). Congruent Visual Speech Enhances Cortical Entrainment 
to Continuous Auditory Speech in Noise-Free Conditions. The Journal of Neuroscience 35, 14195-
14204. 



   
 

   
 

Crosse, M.J., Di Liberto, G.M., Bednar, A., and Lalor, E.C. (2016a). The multivariate temporal response 
function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous stimuli. 
Frontiers in human neuroscience 10. 

Crosse, M.J., Di Liberto, G.M., and Lalor, E.C. (2016b). Eye can hear clearly now: inverse effectiveness in 
natural audiovisual speech processing relies on long-term crossmodal temporal integration. 
Journal of Neuroscience 36, 9888-9895. 

De Cheveigné, A., Di Liberto, G.M., Arzounian, D., Wong, D.D., Hjortkjaer, J., Fuglsang, S., and Parra, L.C. 
(2019). Multiway canonical correlation analysis of brain data. NeuroImage 186, 728-740. 

De Cheveigné, A., and Nelken, I. (2019). Filters: when, why, and how (not) to use them. Neuron 102, 280-
293. 

De Cheveigné, A., and Parra, L.C. (2014). Joint decorrelation, a versatile tool for multichannel data analysis. 
Neuroimage 98, 487-505. 

De Cheveigné, A., Wong, D.D., Di Liberto, G.M., Hjortkjaer, J., Slaney, M., and Lalor, E. (2018). Decoding 
the auditory brain with canonical component analysis. NeuroImage 172, 206-216. 

Desai, M., Holder, J., Villarreal, C., Clark, N., and Hamilton, L.S. (2021). Generalizable EEG encoding models 
with naturalistic audiovisual stimuli. bioRxiv. 

Di Liberto, G.M., Crosse, M.J., and Lalor, E.C. (2018a). Cortical Measures of Phoneme-Level Speech 
Encoding Correlate with the Perceived Clarity of Natural Speech. eNeuro 5. 

Di Liberto, G.M., and Lalor, E.C. (2017). Indexing cortical entrainment to natural speech at the phonemic 
level: Methodological considerations for applied research. Hearing research 348, 70-77. 

Di Liberto, G.M., O’sullivan, J.A., and Lalor, E.C. (2015). Low-Frequency Cortical Entrainment to Speech 
Reflects Phoneme-Level Processing. Current Biology 25, 2457-2465. 

Di Liberto, G.M., Pelofi, C., Bianco, R., Patel, P., Mehta, A.D., Herrero, J.L., De Cheveigné, A., Shamma, S., 
and Mesgarani, N. (2020). Cortical encoding of melodic expectations in human temporal cortex. 
Elife 9, e51784. 

Di Liberto, G.M., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., and Lalor, E.C. (2018b). Atypical 
cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. 
NeuroImage 175, 70-79. 

Ding, N., Chatterjee, M., and Simon, J.Z. (2014). Robust cortical entrainment to the speech envelope relies 
on the spectro-temporal fine structure. Neuroimage 88, 41-46. 

Ding, N., and Simon, J.Z. (2012). Neural coding of continuous speech in auditory cortex during monaural 
and dichotic listening. Journal of neurophysiology 107, 78-89. 

Ding, N., and Simon, J.Z. (2013). Adaptive Temporal Encoding Leads to a Background-Insensitive Cortical 
Representation of Speech. Journal of Neuroscience 33, 5728-5735. 

Ding, N., and Simon, J.Z. (2014). Cortical entrainment to continuous speech: functional roles and 
interpretations. Frontiers in human neuroscience 8. 

Frey, H.P., Molholm, S., Lalor, E.C., Russo, N.N., and Foxe, J.J. (2013). Atypical cortical representation of 
peripheral visual space in children with an autism spectrum disorder. European Journal of 
Neuroscience 38, 2125-2138. 

Giraud, A.-L., and Poeppel, D. (2012). Cortical oscillations and speech processing: emerging computational 
principles and operations. Nature neuroscience 15, 511-517. 

Harris, K.D. (2020). Nonsense correlations in neuroscience. bioRxiv. 
Harte, N., and Gillen, E. (2015). TCD-TIMIT: An audio-visual corpus of continuous speech. IEEE Transactions 

on Multimedia 17, 603-615. 
Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., and Bießmann, F. (2014). On 

the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 
87, 96-110. 



   
 

   
 

Hickok, G., and Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews 
Neuroscience 8, 393-402. 

Holdgraf, C.R., Rieger, J.W., Micheli, C., Martin, S., Knight, R.T., and Theunissen, F.E. (2017). Encoding and 
Decoding Models in Cognitive Electrophysiology. Frontiers in Systems Neuroscience 11, 61. 

Huth, A.G., Lee, T., Nishimoto, S., Bilenko, N.Y., Vu, A.T., and Gallant, J.L. (2016). Decoding the semantic 
content of natural movies from human brain activity. Frontiers in systems neuroscience 10, 81. 

Hyvärinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural 
networks 13, 411-430. 

Irino, T., and Patterson, R.D. (2006). A dynamic compressive gammachirp auditory filterbank. Audio, 
Speech, and Language Processing, IEEE Transactions on 14, 2222-2232. 

Ivanova, A., Schrimpf, M., Isik, L., Anzellotti, S., Zaslavsky, N., and Fedorenko, E. (2020). Is it that simple? 
The use of linear models in cognitive neuroscience. 

Kriegeskorte, N., and Douglas, P.K. (2019). Interpreting encoding and decoding models. Current opinion in 
neurobiology 55, 167-179. 

Lalor, E.C., and Foxe, J.J. (2010). Neural responses to uninterrupted natural speech can be extracted with 
precise temporal resolution. European Journal of Neuroscience 31, 189-193. 

Lalor, E.C., Pearlmutter, B.A., Reilly, R.B., Mcdarby, G., and Foxe, J.J. (2006). The VESPA: a method for the 
rapid estimation of a visual evoked potential. Neuroimage 32, 1549-1561. 

Lalor, E.C., Power, A.J., Reilly, R.B., and Foxe, J.J. (2009). Resolving precise temporal processing properties 
of the auditory system using continuous stimuli. Journal of Neurophysiology 102, 349-359. 

Mahajan, Y., Crosse, M.J., Ching, A., Borg, S., Kim, J., and Davis, C. (in prep). Test-retest reliability of 
encoding and decoding models of natural speech and its sensitivity to selective attention in EEG. 

Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of 
neuroscience methods 164, 177-190. 

Mesgarani, N., David, S.V., Fritz, J.B., and Shamma, S.A. (2009). Influence of context and behavior on 
stimulus reconstruction from neural activity in primary auditory cortex. Journal of 
Neurophysiology 102, 3329-3339. 

Miran, S., Akram, S., Sheikhattar, A., Simon, J.Z., Zhang, T., and Babadi, B. (2018). Real-time tracking of 
selective auditory attention from M/EEG: A bayesian filtering approach. Frontiers in neuroscience 
12, 262. 

Murray, M.M., Brunet, D., and Michel, C.M. (2008). Topographic ERP analyses: a step-by-step tutorial 
review. Brain topography 20, 249-264. 

Nichols, T.E., and Holmes, A.P. (2002). Nonparametric permutation tests for functional neuroimaging: a 
primer with examples. Human brain mapping 15, 1-25. 

Nunez-Elizalde, A.O., Huth, A.G., and Gallant, J.L. (2019). Voxelwise encoding models with non-spherical 
multivariate normal priors. Neuroimage 197, 482-492. 

O'sullivan, J.A., Power, A.J., Mesgarani, N., Rajaram, S., Foxe, J.J., Shinn-Cunningham, B.G., Slaney, M., 
Shamma, S.A., and Lalor, E.C. (2015). Attentional selection in a cocktail party environment can be 
decoded from single-trial EEG. Cerebral Cortex 25, 1697-1706. 

O’sullivan, A.E., Crosse, M.J., Di Liberto, G.M., Cheveigné, A.D., and Lalor, E.C. (2021). Neurophysiological 
indices of audiovisual speech processing reveal a hierarchy of multisensory integration effects. 
The Journal of Neuroscience, JN-RM-0906-0920. 

O’sullivan, A.E., Crosse, M.J., Di Liberto, G.M., and Lalor, E.C. (2017). Visual Cortical Entrainment to Motion 
and Categorical Speech Features during Silent Lipreading. Frontiers in human neuroscience 10, 
679. 

Obleser, J., and Kayser, C. (2019). Neural entrainment and attentional selection in the listening brain. 
Trends in cognitive sciences 23, 913-926. 



   
 

   
 

Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral 
lateralization as 'asymmetric sampling in time'. Speech Communication 41, 245-255. 

Power, A.J., Mead, N., Barnes, L., and Goswami, U. (2013). Neural entrainment to rhythmic speech in 
children with developmental dyslexia. Frontiers in human neuroscience 7, 777. 

Richards, B.A., Lillicrap, T.P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath, C., Costa, R.P., 
De Berker, A., and Ganguli, S. (2019). A deep learning framework for neuroscience. Nature 
neuroscience 22, 1761-1770. 

Snyder, D., Chen, G., and Povey, D. (2015). Musan: A music, speech, and noise corpus. arXiv preprint 
arXiv:1510.08484. 

Stevens, S.S. (1955). The measurement of loudness. The Journal of the Acoustical Society of America 27, 
815-829. 

Vellutino, F.R., Fletcher, J.M., Snowling, M.J., and Scanlon, D.M. (2004). Specific reading disability 
(dyslexia): What have we learned in the past four decades? Journal of child psychology and 
psychiatry 45, 2-40. 

Winkler, I., Debener, S., Müller, K.-R., and Tangermann, M. (Year). "On the influence of high-pass filtering 
on ICA-based artifact reduction in EEG-ERP", in: 2015 37th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC): IEEE), 4101-4105. 

Wong, D.D., Fuglsang, S.A., Hjortkjær, J., Ceolini, E., Slaney, M., and De Cheveigne, A. (2018). A comparison 
of regularization methods in forward and backward models for auditory attention decoding. 
Frontiers in neuroscience 12, 531. 

Wu, M.C.-K., David, S.V., and Gallant, J.L. (2006). Complete functional characterization of sensory neurons 
by system identification. Annu. Rev. Neurosci. 29, 477-505. 

Yamins, D.L., and Dicarlo, J.J. (2016). Using goal-driven deep learning models to understand sensory 
cortex. Nature neuroscience 19, 356-365. 

Zuk, N.J., Di Liberto, G.M., and Lalor, E.C. (2019). "Linear-nonlinear Bernoulli modeling for quantifying 
temporal coding of phonemes in brain responses to continuous speech", in: 2019 Conference on 
Cognitive Computational Neuroscience. (Berlin, Germany). 

 


