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ABSTRACT

Statistical hypothesis testing and effect size measurement are routine parts of quantitative research.
Advancements in computer processing power have greatly improved the capability of statistical in-
ference through the availability of resampling methods. However, many of the statistical practices
used today are based on traditional, parametric methods that rely on assumptions about the under-
lying population. These assumptions may not always be valid, leading to inaccurate results and
misleading interpretations. Permutation testing, on the other hand, generates the sampling distri-
bution empirically by permuting the observed data, providing distribution-free hypothesis testing.
Furthermore, this approach lends itself to a powerful method for multiple comparison correction
— known as max correction — which is less prone to type II errors than conventional correction
methods. Parametric methods have also traditionally been utilized for estimating the confidence
interval of various test statistics and effect size measures. However, these too can be estimated em-
pirically using permutation or bootstrapping techniques. Whilst resampling methods are generally
considered preferable, many popular programming languages and statistical software packages lack
efficient implementations. Here, we introduce PERMUTOOLS, a MATLAB package for multivari-
ate permutation testing and effect size measurement.

Background

Hypothesis testing

For over a century, researchers have relied on parametric statistical procedures for conducting hypothesis testing, such
as the famous Student’s t-test [Student, 1908]. However, parametric testing was developed out of the necessity to make
inferences about the null distribution, as it was impractical to generate it empirically. Today, it is possible to do so
using permutation tests. Permutation tests work by permuting the observed data in an appropriate manner to compute
the empirical distribution of the test statistic of interest — known as the permutation distribution — which approaches
the null distribution [Fisher, 1935]. From the permutation distribution, we can estimate the confidence interval (CI)
of the test statistic by computing the corresponding percentiles (e.g. 2.5% and 97.5% percentiles for 95% CI). We
can also estimate the probability of observing such a result by chance (i.e. the p-value) by calculating the proportion
of the permutation distribution that is greater than or equal to the magnitude of the test statistic (Fig. 1). The more
permutations generated, the more accurate the estimate. Typically, permutations in the order of several thousand are
required to obtain reliable p-values, which is computationally trivial for modern computers [Ernst, 2004].

Permutation testing can be applied to any statistical test. As no assumptions are made about the shape of the un-
derlying distribution, permutation tests provide distribution-free nonparametric hypothesis testing without the need
for rank-transformations [Holt and Sullivan, 2023]. For independent samples, permutation tests have been shown to
be relatively insensitive to differences in population variance when samples of equal size are used [Murphy, 1967,
Groppe et al., 2011b]. Moreover, permutation tests have been shown to be superior to parametric tests in biomedical
research [Ludbrook and Dudley, 1998], and are more robust to the researcher’s choice of significance level and thus
more likely to produce replicable results [Noguchi et al., 2021]. Note, p-values should always be reported as a con-
tinuous measure (as opposed to the traditional dichotomous approach) but should never be interpreted as the strength
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of an effect (for that, we use effect size measures) [Wasserstein and Lazar, 2016]. PERMUTOOLS offers permutation
testing and confidence interval estimation for a range of statistical tests, including the ANOVA (one-way, two-way), t-
test (one-sample, paired-sample, two-sample), F-test (two-sample), Z-test (one-sample), and correlation test (Pearson,
Spearman, rankit). It does not output dichotomous test results to discourage this practice.

Correcting for multiple comparisons

When conducting multiple hypothesis tests simultaneously, there is an increased risk of false discoveries or type I
errors. However, many of the traditional correction methods used to control family-wise error rate (FWER) tend to
be overly conservative, resulting in increased type II errors (e.g. Bonferroni correction, Holm–Bonferroni method).
Researchers are often faced with the delicate task of controlling the trade-off between type I and type II errors. In
the biomedical field, researchers tend to preference controlling for type I errors, because the consequences of false
positives can be detrimental, e.g. the introduction of an ineffective new therapy or treatment [Ludbrook and Dudley,
1998]. This inherent bias, along with the use of overly conservative correction methods, can be limiting in the pursuit
of scientific progress.

Another advantage of permutation tests is that they can utilize a powerful technique for correcting for multiple com-
parisons — known as max correction — which is less prone to type II errors than conventional correction methods
[Blair and Karniski, 1993, Westfall and Young, 1993]. Max correction (also known as tmax correction [Blair et al.,
1994] or joint correction [Boca et al., 2014]) works as follows: on each permutation of the data, a separate test statistic
is computed for each variable and the maximum absolute value (or most extreme positive or negative value) is taken
across all variables. Repeating this procedure thousands of times produces a single permutation distribution against
which the actual test statistic is compared (Fig. 1). Thus, taking the maximum across more variables naturally pro-
duces a more conservative permutation distribution. This highly intuitive approach provides strong control of FWER,
even for small sample sizes [Gondan, 2010, Groppe et al., 2011a, Rousselet, 2023]. Max correction has been used
in various scientific disciplines, including the study of electrophysiological data [Blair and Karniski, 1993, Groppe
et al., 2011a,b] and human behavioural data [Gondan, 2010, Shaw et al., 2020, Crosse et al., 2022]. PERMUTOOLS
automatically applies max correction to multivariate data, unless specified otherwise.

Measuring effect size

Effect size measurement is an equally important part of inferential statistics [Hentschke and Stüttgen, 2011]. Today,
most scientific journals require that authors report the size of an effect, and not just its dichotomous existence. A
common effect size measure used in research is the standardised mean difference, known as Cohen’s d [Cohen, 1969].
Standardised effect sizes have the advantage of being metric-free, meaning that they can be directly compared across
different studies. For independent samples, Cohen’s d uses the pooled standard deviation when they are assumed
to have equal variances, and an unpooled estimate when this cannot be assumed. For independent samples with
significantly different variances, an estimate based on the control sample’s variance can be used, known as Glass’
delta [Glass, 1976]. In the case of ordinal data, an alternative formulation known as Cliff’s d should be used [Cliff,
1993]. PERMUTOOLS gives the option to implement any of the above standardised effect size measures, as well as
several unstandardised measures.

It is also typical to report the confidence interval of an effect size. Whilst they have traditionally been calculated
using parametric methods, these too can be estimated empirically by generating the sampling distribution using a
resampling procedure known as bootstrapping. Bootstrapping is fundamentally different to permutation testing in that
it resamples with replacement, whereas permutation testing resamples without replacement. PERMUTOOLS uses an
efficient bootstrapping algorithm that is optimised for multivariate data analysis.

Correcting for sample size

As with all statistical tests, the larger the sample size, the more accurately it can describe the population. However, in
certain scientific disciplines, researchers are often required to work with relatively small (n < 50) sample sizes due
to the limited availability of test subjects or other logistical study constraints. This can hinder our ability to measure
the true, unbiased size of an effect. Despite the advantages of using a standardised effect size measure, metrics such
as Cohen’s d have been shown to have an upwards bias of up to about 4% for sample sizes of less than 50. This bias
is somewhat reduced by using the pooled weighted standard deviation of the samples [Hedges, 1981]. Additionally,
a bias correction factor can be applied to the effect size measure, which is approximately equal to 1 − 3/(4n − 9)
[Hedges and Olkin, 1985]. When this correction factor is applied, it is usual to refer to the effect size as Hedges’ g.
The same correction factor can also be applied to the corresponding CIs. PERMUTOOLS automatically applies bias
correction when calculating Cohen’s d and Glass’ delta (and their CIs), unless specified otherwise.

2



PERMUTOOLS

Figure 1: Permutation distributions for two-tailed tests based on the t-statistic (Blue: uncorrected, Red: max-
corrected). Multivariate data were randomly generated to simulate two independent samples, each consisting of 20
variables (i.e. adjusted for 20 comparisons) and 30 observations (see example code below). The uncorrected permuta-
tion distribution shown is that for variable 3. The permutation test for variable 3 would not survive max correction at
the 5% significance level (p = 0.11).

Statement of need

Whilst resampling methods have gained widespread acceptance, many popular programming languages, including
MATLAB, lack efficient implementations or have not yet fully integrated them into their core statistical packages.
This hinders the adoption of these robust and versatile techniques by researchers, therefore limiting the quality and
reliability of quantitative research. To address this need, PERMUTOOLS provides a comprehensive set of functions in
the MATLAB programming language for conducting resampling-based statistics that are easy to use and computation-
ally efficient. Moreover, it is optimised for dealing with large, multivariate datasets and offers powerful methods for
correcting for multiple comparisons and sample size, making it an invaluable tool for researchers across various fields
of quantitative research. PERMUTOOLS offers a range of new features that distinguish it from existing statistical
software packages. Some of the key features are described below.

Key features

• Optimised Resampling Algorithms: PERMUTOOLS utilizes efficient implementations of resampling al-
gorithms that are optimised for multivariate data, ensuring efficient processing of even large datasets with
negligible compute times.

• Multiple Comparison Correction: PERMUTOOLS implements the powerful max correction method to adjust
p-values and CIs for multiple comparisons when dealing with multivariate data, reducing the risk of both type
I and type II errors.

• Sample Size Correction: PERMUTOOLS applies a bias correction factor to the relevant standardised effect
size measures and their CIs to adjust for any inherent inflation due to sample size, ensuring less biased
estimates for small (n < 50) samples.

• Multivariate Processing: PERMUTOOLS handles multivariate datasets with ease, allowing for multiple tests
to be performed simultaneously, as well as the option to perform pairwise comparisons between every com-
bination of variables in a matrix (e.g. correlation matrix).

• Continuous Framework: PERMUTOOLS does not output test results under the traditional dichotomous
decision-based framework (i.e. H = 0, 1). Instead, it outputs quantitative measures, encouraging researchers
to interpret their results under a continuous framework.
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Using PERMUTOOLS

The PERMUTOOLS functions are designed to mimic the API of the equivalent parametric functions in MATLAB,
with the addition of the prefix ‘permu’ at the beginning of the function name. For example, to conduct a permutation
test based on the t-statistic, the usual function ttest() becomes permuttest() etc. The input and output arguments
are the same as before with the exception that the first output variable is always the test statistic (and not a dichotomous
test result). An additional output variable containing the sampling distribution is included, as well as additional
resampling-related input arguments that are described in the help documentation of each function. PERMUTOOLS
uses a consistent input/output argument framework across all functions.

Example

The following example illustrates typical usage of the PERMUTOOLS toolbox. Here, we compare the means of two
independent multivariate samples using permutation tests based on the t-statistic with max correction, and contrast the
results with the equivalent parametric tests in MATLAB (i.e. two-sample t-tests). We then measure the associated
effect sizes based on the bias-corrected standardised mean difference (i.e. Hedges’ g), as well as the bootstrapped and
parametric CIs.

First, we generate random multivariate data for two independent samples X and Y. Both samples have 20 variables,
each with a mean value of approximately 0, except for the first 10 variables of Y which have a mean value of approxi-
mately −1. Each variable contains 30 observations.

% Generate random data
rng (42);
x = randn (30 ,20);
y = randn (30 ,20);
y(: ,1:10) = y(: ,1:10) -1;

Because we generated the random multivariate data from the same (normal) distribution, we can assume that their
variances are approximately equal. If we could not assume this, we would first conduct a two-tailed test of variance
based on the F-statistic using PERMUTOOLS’ permuvartest2() function. Thus, we can proceed using the standard
Student’s t-statistic (as opposed to Welch’s t-statistic). The two-sample permutation tests are implemented using
PERMUTOOLS’ permuttest2() function and the equivalent parametric tests are implemented using MATLAB’s
ttest2() function. By default, max correction is applied to the permutation tests.

% Run MATLAB 's two -sample parametric t-test
[h1,p1,ci1 ,stats1] = ttest2(x,y);

% Run PERMUTOOLS ' two -sample permutation t-test
[t2,p2,ci2 ,stats2] = permuttest2(x,y);

To measure the corresponding effect sizes, we compute Hedges’ g and the 95% CIs using an efficient bootstrapping
procedure. Effect size measures and bootstrapped CIs are calculated using PERMUTOOLS’ booteffectsize()
function. The equivalent parametric measures are calculated using MATLAB’s meanEffectSize() function. By
default, bias-correction is applied in both cases.

% Run MATLAB 's parametric effect size measure
d3 = zeros (1,20);
ci3 = zeros (2,20);
for j = 1:20

stats3 = meanEffectSize(x(:,j),y(:,j),'effect ','cohen ','paired ' ,0);
d3(j) = stats3.Effect;
ci3(:,j) = stats3.ConfidenceIntervals ';

end

% Run PERMUTOOLS ' bootstrapped effect size measure
[d4,ci4 ,stats4] = booteffectsize(x,y,'effect ','cohen ','paired ' ,0);
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To compare the results of our parametric and permutation tests, we next plot some of the statistics as a function
of variable (Fig. 2). The effect of max correction is clearly visible on the test statistic CIs and the resulting p-
values, which are consistently more conservative than those of the uncorrected parametric tests (Fig. 2, left, middle).
Importantly, comparisons where there appear to be spuriously significant effects in the parametric case (e.g. variable
20) did not survive the maximal statistic criterion in the permutation tests. In the effect size analysis, we can see that
the bootstrapped CIs approximate the parametric CIs reasonably well (Fig. 2, right).

% Set up figure
figure('Name','Permutation & Effect Size Analysis ')
set(gcf ,'color ','w')
xaxis = 1:20;

% Plot test statistics & CIs
subplot (1,3,1), hold on
plot(xaxis ,stats2.mu,'LineWidth ' ,2.5)
plot(xaxis ,ci1 ,'k',xaxis ,ci2 ,'--r','LineWidth ' ,1)
xlim ([0 ,21]), ylim ([-3,3]), box on, grid on
title('Test Statistic '), xlabel('variable '), ylabel('X-Y')
legend('mean difference ','95% CI (param.)','','95% CI (perm.)')

% Plot p-values
subplot (1,3,2), hold on
plot(xaxis ,p1,'k',xaxis ,p2,'--r','LineWidth ' ,1.5)
ylim ([0 ,1]), xlim ([0 ,21]), box on, grid on
title('{\itP}-value '), xlabel('variable '), ylabel('probability ')
legend('{\itp}-value (param .)','{\itp}-value (perm.)')

% Plot effect sizes & CIs
subplot (1,3,3), hold on
plot(xaxis ,d4,'LineWidth ' ,2.5)
plot(xaxis ,ci3 ,'k',xaxis ,ci4 ,'--r','LineWidth ' ,1)
ylim ([-2,6]), xlim ([0 ,21]), box on, grid on
title('Effect Size'), xlabel('variable '), ylabel('Hedges '' {\itg}')
legend('effect size','95% CI (param.)','','95% CI (boot.)')

From the above statistical analysis, we can examine the results of each individual pairwise comparison between X and
Y, which are contained in the variables output by the PERMUTOOLS functions. Taking the first variables of X and
Y as an example, we see that the mean of X1 (M = −0.06, SD = 0.91) was significantly greater than the mean of
Y1 (M = −1.09, SD = 0.86), even after adjusting for multiple comparisons (t(58) = 4.49, p = 0.0008, Hedges’
g = 1.14, 95CI [0.68, 1.72]). We recommend reporting the results of such statistical comparisons as shown here, in
particular, with the effect size and CI included.

Future work

PERMUTOOLS is under active development, and new functions and features are constantly being added to it as
needed. Future work aims to expand the toolbox to provide new permutation-based tests, including repeated measures
ANOVAs (one-way, two-way) and multi-way ANOVAs (n-way), as well as expanding existing permutation tests to
be able to deal with unbalanced and multivariate samples (e.g. unpaired ANOVAs). Whilst permutation tests have
been shown to outperform nonparametric tests based on rank transformations [Holt and Sullivan, 2023], there are
certain situations where a rank-transformation approach is desirable; for example, when dealing with ordinal data and
outliers. To accommodate a wider range of data types, future work aims to develop permutation tests based on rank
transformations, e.g. Sign test, Wilcoxon signed rank test, Mann-Whitney U-test, Kruskal-Wallis test, Friedman test,
etc.

If you would like to contribute to PERMUTOOLS, or request that a specific statistical test or feature be added to it,
please email the corresponding author at the email address provided above.
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Figure 2: Results of the permutation and effect size analysis. Left: Test statistic (unstandardised) and 95% CI (para-
metric and permutation) for each test. Middle: P-value (parametric and permutation) for each test. Right: Effect size
(Hedges’ g) and 95% CI (parametric and bootstrapped) for each test.

Availability

PERMUTOOLS is freely available to download from GitHub (https://github.com/mickcrosse/PERMUTOOLS)
and is compatible with Windows, Linux, and macOS. Example code demonstrating its usage is included in the exam-
ples folder and on the GitHub page.
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