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Abstract— Traditionally, the use of electroencephalography 
(EEG) to study the neural processing of natural stimuli in 
humans has been hampered by the need to repeatedly present 
discrete stimuli. Progress has been made recently by the 
realization that cortical population activity tracks the 
amplitude envelope of speech stimuli. This has led to studies 
using linear regression methods which allow the presentation of 
continuous speech. One such method, known as stimulus 
reconstruction, has so far only been utilized in multi-electrode 
cortical surface recordings and magnetoencephalography 
(MEG). Here, in two studies, we show that such an approach is 
also possible with EEG, despite the poorer signal-to-noise ratio 
of the data. In the first study, we show that it is possible to 
decode attention in a naturalistic cocktail party scenario on a 
single trial (≈60 s) basis. In the second, we show that the 
representation of the envelope of auditory speech in the cortex 
is more robust when accompanied by visual speech. The 
sensitivity of this inexpensive, widely-accessible technology for 
the online monitoring of natural stimuli has implications for the 
design of future studies of the cocktail party problem and for 
the implementation of EEG-based brain-computer interfaces.  

I. INTRODUCTION 

Analyzing electroencephalography (EEG) data on a single 
trial basis is extremely difficult due to its inherently poor 
signal-to-noise ratio and large inter-trial variability. The 
most widely used method of analyzing auditory processing 
has been to use Auditory Evoked Potentials (AEPs) which 
require the repeated presentation of discrete stimuli, 
followed by the averaging of the resulting responses . 
This severely inhibits the ecological validity of experiments 
examining natural speech, which is continuous by nature. 
Recent research has shown that neuronal activity in auditory 
cortex tracks the amplitude envelope of natural speech [5-7]. 
Using this result, novel system identification approaches 
have been developed such as the AESPA (Auditory Evoked 
Spread Spectrum Analysis) [8]. This method calculates a 
linear forward mapping between the amplitude envelope of 
speech and the EEG data. As such, it has been useful in 
addressing important questions such as the cocktail party 
problem [9]. Using a mapping approach in the backward 
direction, several recent studies have used invasive 
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neurophysiological recordings in animals and MEG in 
humans to estimate a reconstruction of the causal input 
speech stimulus on a subject by subject basis [10-13]. 
Invasive recordings are not an option for most human 
subjects. Also, the cost, lack of portability and availability of 
MEG recording facilities make population specific research 
somewhat difficult. Thus, it would be extremely useful if 
this approach could be employed in EEG which is cheaper, 
more widely accessible and easier to use in many specific 
cohorts and in brain-computer interface applications. Also, 
MEG and EEG detect slightly different aspects of the 
simultaneous electromagnetic brain activity; for example, 
localization of cerebral sources of brain activity may be 
simpler and more accurate with MEG [14]. However, EEG 
shows many attention-related components that are not 
clearly detected with MEG [15, 16]. Here, in two 
experiments, we use a stimulus reconstruction approach to 
quantify the effects of attention and visual input on the 
representation of natural speech in EEG. In the first study, 
we attempt to decode EEG on a single trial (≈60 s) basis in 
order to determine which speaker a subject is attending to in 
a natural cocktail party like scenario. In the second, we 
examine the multisensory effects of visual input on the 
representation of auditory speech in the cortex. 

II. METHODS 

A. EEG Acquisition and Pre-processing 

EEG data were recorded at 128 electrode positions, 
filtered online above 134 Hz and digitized at a rate of 512 Hz 
using a BioSemi ActiveTwo system. The data were re-
referenced offline to the average of the left and right mastoid 
channels. The EEG data were then digitally band-pass 
filtered between 2 and 20 Hz. 

In order to decrease the processing time required, all 
EEG data were downsampled by a factor of 6, whilst 
ensuring that aliasing and phase distortion were avoided. 
The amplitude envelope of the speech signals was also 
converted to this sampling rate to allow us to relate its 
dynamics to those of the EEG. Further to this, because 
envelope frequencies between 2 and 16 Hz contribute most 
to speech intelligibility [17, 18], the envelope was low-pass 
filtered with a corner frequency of 20 Hz. 

B. Stimulus Reconstruction 

Our strategy for analyzing EEG data centers on the 
approach of stimulus reconstruction. This approach attempts 
to reconstruct an estimate of the input stimulus (S) using 
recorded neural data (R) via a linear reconstruction model 
(g) [10-12, 19-21]. For a set of N electrodes, we represent 
the response of electrode n at time t = 1 . . . T as R(t,n). The 
reconstruction model g(τ,n) is a function that maps R(t,n) to 
stimulus S(t) as follows: 
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where  ̂ denotes the estimated stimulus representation. In 
our case, we generated an estimate of the amplitude 
envelope of the input stimulus using our 128 channels of 
EEG data. We chose to use the optimal prior method of 
stimulus reconstruction. This approach optimally minimizes 
the mean-squared error (MSE) of the estimated input by 
using known statistical structures and stimulus correlations 
to improve reconstruction accuracy, even if the information 
is not explicitly encoded in neural responses. This is in 
contrast to the flat prior method which first determines a 
minimum MSE forward mapping from stimulus to neural 
data, and then uses the inverse of this mapping to perform 
stimulus reconstruction given new data. As such, the optimal 
prior and flat prior methods are the complementary 
backward and forward predictions in the linear regression 
framework. See Mesgarani et al. [10] for a detailed 
description of the mathematics involved.  

Previous research using stimulus reconstruction has 
attempted to reconstruct the full spectrogram of an input 
stimulus using either neurophysiological recordings in 
animals [10] or human electrocorticogram data [19]. Given 
the poorer signal to noise ratio of EEG, particularly at 
frequencies above ≈30 Hz, we limited ourselves to 
reconstructing the slow (<20 Hz) amplitude envelope of the 
speech stream. 

C. Attention Study 

1) Subjects 

Forty subjects took part (mean ± standard deviation age, 
27.3 ± 3.2 years; 32 male; seven left-handed). The 
experiment was undertaken in accordance with the 
Declaration of Helsinki. The Ethics Committees of the 
Nathan Kline Institute and the School of Psychology at 
Trinity College Dublin approved the experimental 
procedures, and each subject provided written informed 
consent. Subjects reported no history of hearing impairment 
or neurological disorder. These data have been published 
previously using a different analysis approach [9].  

2) Stimuli and Experimental Procedure 

Each subject undertook 30 trials, each of approximately 
one minute in length, where they were presented with two 
classic works of fiction; one in the left ear and the other in 
the right ear, using headphones. Subjects were divided into 
two groups of 20 with each group being instructed to attend 
to the story in either the left or right ear throughout all 30 
trials (i.e. approximately 1800 s of data per subject). After 
each trial, subjects were required to answer between four 
and six multiple choice questions on both stories. The 
questions had four possible answers. For both stories, each 
trial began where the story ended on the previous trial, with 
no repeat stimulus presentations. Stimulus amplitudes in 
each stream within each trial were normalized to have the 
same root mean squared (RMS) intensity. 

3) Decoder Fitting 

We wished to estimate to which of the two speakers a 
subject was attending based on a single trial (≈60 s). To do 

this, we needed to reconstruct the causal input stimulus from 
their recorded neural data. This was then correlated with the 
actual attended and unattended speech streams, and 
whichever had a greater correlation was chosen as our 
estimate of the attended stream. This reconstruction was 
achieved using an optimal prior linear mapping function 
which we will refer to hereafter as a ‘decoder’. When fitting 
these decoders we chose to quantify the mapping from the 
training data to the corresponding attended speech. In 
addition, we wished to test our decoding ability on data that 
were not used to fit the decoder. As such, for each subject, 
we fit thirty decoders (one for each trial) using the other 29 
trials as training data (leave-one-out cross validation). 

D. Audiovisual Study 

1) Subjects 

Eight right-handed subjects (4 females; mean age, 24.5 
years; range, 20–30 years) took part in this experiment, all of 
whom were free of neurological diseases and had normal 
hearing and normal or corrected-to-normal vision. 

2) Stimuli and Experimental Procedure 

Video recordings of natural speech were used to preserve 
ecological validity. The videos were drawn from a collection 
of YouTube movies featuring Barack Obama (uploaded by 
barackobama.com). Seven videos were each truncated to  
120s using VideoPad Video Editor and rendered into 640 × 
360 pixel movies with a digitization rate of 29.97 frames/s. 
The stereo soundtracks were digitized at 44.1 kHz with 16-
bit resolution. Stimulus presentation was conducted using 
Presentation software and delivered using a 19” CRT 
monitor and Sennheiser HD650 headphones. Each video was 
presented three times, once for each of the following 
conditions; audio-only (A), visual-only (V) and audiovisual 
(AV). The order in which the three conditions were 
presented was randomized. Subjects were instructed to 
maintain visual fixation for the duration of each run on the 
speaker’s mouth for V and AV, and on a grey crosshair for 
A. Before each movie began, the first frame was displayed 
for three seconds. Subjects were positioned 70 cm from the 
monitor and instructed to keep eye-blinking and all other 
motor activity to a minimum. 

3) Quantification of Encoding 

We wanted to compare the cortical representation of 
natural speech during A and AV speech. To quantify how 
well this information was encoded during each condition, we 
reconstructed the amplitude envelope of the input signal 
from the EEG data and correlated it with the envelope of the 
actual speech signal. Given that we had seven runs per 
condition we trained and tested our decoders using leave-
one-out cross validation. The decoders were fitted using 
EEG data from only the channels anterior of the midline as 
we wanted to assess the effect of visual speech on auditory 
processing without the confound of including extra visual 
cortical activity. To examine if there was any significant 
unimodal contribution from visual speech at these 
electrodes, the performance values (Pearson’s r) of the V 
decoder were compared to zero. The performance values of 
the A and AV decoders were then compared against each 
other on a matched trial basis. 

2801



  

III. RESULTS 

A. Effects of Attention 

1) Behavior 

As was reported previously, our behavioral results 
clearly showed that subjects were compliant in terms of the 
attention task [9]. On average, subjects correctly answered 
80.4 ± 7.3 % of questions on the attended story and 27.1 ± 
7.0 % on the unattended story, which, consistent with 
previous reports on dichotic listening behavior, was not 
statistically greater than chance (P = 0.77). 

2) Decoding Attention 

We wanted to avoid introducing any attentional, 
stimulus-specific or subject-specific bias in terms of the 
choice of fitted decoder. As such, for each subject and each 
trial, we estimated the causal speech stimulus using the 
attended decoders from every other subject. For example, for 
trial 1 of subject 1, we used every other subject’s attended 
decoder (trained on trials 2 to 30) to reconstruct the stimulus 
from subject 1’s EEG data. This resulted in 39 reconstructed 
stimulus envelopes, which were summed together and then 
correlated with both the attended and unattended streams. 
Whichever speech stream had a greater correlation 
(Pearson’s r) with our estimate was chosen as the attended 
stream. Importantly, this approach minimizes any stimulus 
bias in terms of the decoder fitting because 19 subjects were 
attending one stream, while 20 were attending the other. 
Using this approach, we were able to significantly determine 
which speaker was being attended to for 35 of our 40 
subjects (mean 77 %, min 43 %, max 100 %). Decoding 
accuracy was deemed significant at 63.33% based on a 
binomial test at the 5% significance level. (Fig. 1). 

B. Effects of Visual Input 

To analyze the contribution from visual speech, we took 
the Pearson correlation coefficients from the V decoder and 
compared the mean of their distribution to zero using a one- 
sampled t-test. The difference was not significant (P = 0.73), 
indicating that there was no significant unimodal 
contribution from visual speech at the electrodes on the 
anterior half of the head.   

 
Figure 1.  Accuracy in determining which speech stream a subject was 

attending to. The grey area indicates the significant level of decoding 
accuracy (63%) based on a binomial test at the 5% significance level. 

Figure 2 is a scatter plot of the single trial performance 
values of the A and AV decoders. The correlation values 
from each decoder are matched according to subject and trial 
number, and plotted against each other. The different colors 
are representative of whether the correlation between the 
reconstruction and the original envelope was significant for 
an alpha level of 0.05 (Blue = both trials significant; red = 
only AV trial significant; green = only A trial significant; 
cyan = neither trials significant). A total of 56 trials are 
plotted in total (8 subjects, 7 runs). Out of these, 94.6% of 
the AV trials were found to be significant whereas only 
78.6% of the A trials were significant. Furthermore, the AV 
correlations (r values) scored higher than the A values in 
66.1% of the 56 trials.  

To test the significance of this result, we used a paired t-
test to compare mean of the A and AV r-distributions. This 
difference was found to be significant (P < 0.01), suggesting 
that the AV decoder performed better than the A decoder. 
We interpret this as evidence that the amplitude envelope of 
auditory speech was represented more robustly in the cortex 
during audiovisual speech than it was during audio-only 
speech.  

IV. DISCUSSION 

In the first study, we show for the first time the ability 
to decode EEG data on a single trial basis using the method 
of stimulus reconstruction. We were able to determine to 
which of two speakers a subject was attending to for 35 out 
of our 40 subjects. However, the percentage of trials 
accurately predicted was not as high as hoped, with a mean 
of 77 %. Much of this could be attributed to the fact that the 
data were originally collected for a different study [9], and 
as such, we were unable to tailor the experiment for our 
specific needs. Most crucial is the fact that none of the 
subjects listened to single speaker speech stimuli. Ideally, 
we would train our decoders on this instead, akin to stimulus 
reconstruction studies carried out previously [10, 19]. 
Instead, our data were acquired during the dichotic listening 
task, thus biasing our decoders to the attended stream. If we 
had used each subject’s decoder to reconstruct their own 
stimulus for each trial, we would have 

Figure 2.  Comparison of the A and AV decoder performance at accurately 

reconstructing the input stimulus. Out of the 56 trials, the AV decoder 
performed better on 66.1 % of the trials. 
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significantly increased our percentage accuracy in predicting 
attention. However, as mentioned previously, this would 
have been biased. The fact that we were able to decode 
attention at all using the average decoder technique is 
therefore encouraging, indicating that with better data, a 
much greater accuracy might be achieved. 

In terms of multimodal inputs, we used this method to 
quantify how well auditory speech was represented in the 
cortex for different modes of speech. From just 8 subjects, 
each with 14 minutes of data, we found a significant 
improvement in the encoding of audiovisual speech 
compared with audio-only speech. By restricting our 
analysis to frontal electrodes only, we were able to limit 
contributions from visual cortex, which would contribute 
more to audiovisual EEG data than during the audio-only 
condition.  

The advantage of the stimulus reconstruction method 
over other approaches is in its ability to analyze all 
electrodes simultaneously, thus using all of the available 
information that is spread across the scalp at each instant in 
time. It does this by finding a multivariate linear filter that 
incorporates the channel covariance structure in the 
estimation of the impulse response, resulting in a significant 
quantitative improvement in the input-output mapping.  

The speed with which this can be done suggests a 
possible role for this method in the future design of Brain 
Computer Interfaces (BCIs). With sufficient data and 
training, it is feasible that a subject-specific decoder could 
be created, which would have enough sensitivity to 
accurately decode attention at latencies far shorter than 60 
seconds. 

The disadvantage of this method however, is the inability 
to use more traditional methods to localize the generators of 
scalp recorded activity, and the lack of an illustrative 
impulse response function in which to analyze the amplitude 
and latencies of various brain functions. Therefore, it would 
be advantageous to accompany this approach with a forward 
mapping method, such as the AESPA, in order to obtain a 
fuller understanding of the acquired data. 
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