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Seeing a speaker’s face benefits speech comprehension, especially in challenging listening conditions. This perceptual benefit
is thought to stem from the neural integration of visual and auditory speech at multiple stages of processing, whereby move-
ment of a speaker’s face provides temporal cues to auditory cortex, and articulatory information from the speaker’s mouth
can aid recognizing specific linguistic units (e.g., phonemes, syllables). However, it remains unclear how the integration of
these cues varies as a function of listening conditions. Here, we sought to provide insight on these questions by examining
EEG responses in humans (males and females) to natural audiovisual (AV), audio, and visual speech in quiet and in noise.
We represented our speech stimuli in terms of their spectrograms and their phonetic features and then quantified the
strength of the encoding of those features in the EEG using canonical correlation analysis (CCA). The encoding of both spec-
trotemporal and phonetic features was shown to be more robust in AV speech responses than what would have been expected
from the summation of the audio and visual speech responses, suggesting that multisensory integration occurs at both spec-
trotemporal and phonetic stages of speech processing. We also found evidence to suggest that the integration effects may
change with listening conditions; however, this was an exploratory analysis and future work will be required to examine this
effect using a within-subject design. These findings demonstrate that integration of audio and visual speech occurs at multi-
ple stages along the speech processing hierarchy.
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Significance Statement

During conversation, visual cues impact our perception of speech. Integration of auditory and visual speech is thought to
occur at multiple stages of speech processing and vary flexibly depending on the listening conditions. Here, we examine audio-
visual (AV) integration at two stages of speech processing using the speech spectrogram and a phonetic representation, and
test how AV integration adapts to degraded listening conditions. We find significant integration at both of these stages
regardless of listening conditions. These findings reveal neural indices of multisensory interactions at different stages of proc-
essing and provide support for the multistage integration framework.

Introduction
One prominent theory of speech perception is that speech is proc-
essed in a series of computational steps that follow a hierarchal
structure, with different cortical regions being specialised for proc-
essing different speech features (Scott and Johnsrude, 2003; Hickok
and Poeppel, 2007; DeWitt and Rauschecker, 2012). One key ques-
tion is how visual input influences processing within this hierarchy.

Behavioral studies have shown that seeing the face of a
speaker improves speech comprehension (Sumby and Pollack,
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1954; Grant and Seitz, 2000; Ross et al., 2007). This behavioral
advantage is thought to derive from two concurrent processing
modes: a correlated mode, whereby visual speech dynamics pro-
vide information on auditory speech dynamics, and a comple-
mentary mode, where visual speech provides information on the
articulatory patterns generating the auditory speech (Campbell,
2008). It seems plausible that the information provided by these
two modes would influence levels of the auditory hierarchy dif-
ferently. Indeed, this idea aligns well with a growing body of evi-
dence indicating that audiovisual (AV) speech integration likely
occurs over multiple stages (Schwartz et al., 2004; van
Wassenhove et al., 2005; Eskelund et al., 2011; Baart et al., 2014;
Peelle and Sommers, 2015). One recent perspective (Peelle and
Sommers, 2015) suggests that these stages could include an early
stage, where visual speech provides temporal cues about the
acoustic signal (correlated mode), and a later stage, where visual
cues that convey place and manner of articulation could be inte-
grated with acoustic information to constrain lexical selection
(complementary mode). Such early-stage integration could be
mediated by direct projections from visual cortex that dynami-
cally affect the sensitivity of auditory cortex (Calvert et al., 1997;
Grant and Seitz, 2000; Tye-Murray et al., 2011; Okada et al.,
2013), whereas for later-stage integration, articulatory visual cues
could be combined with acoustic information in supramodal
regions such as the superior temporal sulcus (STS; Beauchamp et
al., 2004; Kayser and Logothetis, 2009; Zhu and Beauchamp,
2017; Karas et al., 2019).

While the evidence supporting multiple stages of AV speech
integration is compelling, there are several ways in which this
multistage model needs to be further developed. First, much of
the supporting evidence has been based on experiments involv-
ing simple (and often illusory) syllabic stimuli or short segments
of speech. This has been very valuable, but it also seems insuffi-
cient to fully explore how a correlated mode of AV integration
might derive from dynamic visual cues impacting auditory corti-
cal processing. Testing the model with natural speech will be nec-
essary (Theunissen et al., 2000; Hamilton and Huth, 2018).
Second, directly indexing neurophysiological representations of
different acoustic and articulatory features will be important for
validating and further refining the key idea that integration hap-
pens at different stages. And third, it will be important to test the
hypothesis that this multistage model is flexible, whereby the rel-
ative strength of integration effects at different stages might
depend on the listening conditions and the availability of visual
information.

These are the goals of the present manuscript. In particular,
we aim to build on recent work that examined how visual speech
affected neural indices of audio speech dynamics using naturalis-
tic stimuli (Luo et al., 2010; Zion Golumbic et al., 2013; Crosse et
al., 2015a, 2016b). We aim to do so by incorporating ideas from
recent research showing that EEG and MEG are sensitive not
just to the acoustics of speech, but also to the processing of
speech at the level of phonemes (Di Liberto et al., 2015;
Khalighinejad et al., 2017; Brodbeck et al., 2018). This will allow
us to derive indices of dynamic natural speech processing at dif-
ferent hierarchical levels and to test the idea that AV speech inte-
gration occurs at these different levels, in line with the multistage
model (Peelle and Sommers, 2015). Finally, we also aim to test
the hypothesis that, in the presence of background noise, there
will be a relative increase in the strength of AV integration effects
in EEG measures of phoneme-level encoding, reflecting an
increased reliance on articulatory information when speech is
noisy. To do all this, we introduce a new framework for indexing

the electrophysiology of AV speech integration based on canoni-
cal correlation analysis (CCA).

Materials and Methods
The EEG data analyzed here were collected as part of previous studies
published by Crosse et al. (2015a, 2016b).

Participants
Twenty-one native English speakers (eight females; age range: 19–
37 years) participated in the speech in quiet experiment. Twenty-one dif-
ferent participants (six females; age range: 21–35) took part in the speech
in noise experiment. Written informed consent was obtained from each
participant beforehand. All participants were native English speakers,
were free of neurologic diseases, had self-reported normal hearing, and
had normal or corrected-to-normal vision. The experiment was
approved by the Ethics Committee of the Health Sciences Faculty at
Trinity College Dublin, Ireland.

Stimuli and procedure
The speech stimuli were drawn from a collection of videos featuring
a trained male speaker. The videos consisted of the speaker’s head,
shoulders, and chest, centered in the frame. The speech was conver-
sational-like and continuous, with no prolonged pauses between
sentences. Fifteen 60-s videos were rendered into 1280� 720-pixel
movies in VideoPad Video Editor (NCH Software). Each video had
a frame rate of 30 frames per second, and the soundtracks were
sampled at 48 kHz with 16-bit resolution. The intensity of each
soundtrack, measured by root mean square, was normalized in
MATLAB (MathWorks). For the speech in noise experiment, the
soundtracks were additionally mixed with spectrally matched sta-
tionary noise to ensure consistent masking across stimuli (Ding and
Simon, 2013; Ding et al., 2014) with signal-to-noise ratio (SNR) of
�9 dB. The noise stimuli were generated in MATLAB using a 50th-
order forward linear predictive model estimated from the original
speech recording. Prediction order was calculated based on the sam-
pling rate of the soundtracks (Parsons, 1987).

In both experiments, stimulus presentation and data recording took
place in a dark sound attenuated room with participants seated at a dis-
tance of 70 cm from the visual display. Visual stimuli were presented on
a 19-inch CRT monitor operating at a refresh rate of 60Hz. Audio stim-
uli were presented diotically through Sennheiser HD650 headphones at
a comfortable level of ;65dB. Stimulus presentation was controlled
using Presentation software (Neurobehavioral Systems). For the speech
in quiet experiment each of the 15 speech passages was presented
seven times, each time as part of a different experimental condition.
Presentation order was randomized across conditions, within par-
ticipants. While the original experiment had seven conditions, here
we focus only on three conditions audio-only (A), visual-only (V),
and congruent AV (AV). For the speech in noise experiment, how-
ever, there were only three conditions (A, V, and AV) and so the
passages were ordered 1–15 and presented three times with the con-
dition from trial-to-trial randomized. This was to ensure that each
speech passage could not be repeated in another modality within 15
trials of the preceding one. Participants were instructed to fixate on
either the speaker’s mouth (V, AVc) or a gray crosshair (A) and to
minimize eye blinking and all other motor activity during
recording.

For both experiments participants were required to respond to target
words via button press. Before each trial, a target word was displayed on
the monitor until the participant was ready to begin. All target words
were detectable in the auditory modality except during the V condition,
where they were only visually detectable. A target word was deemed to
have been correctly detected if subjects responded by button press within
0–2 s after target word onset. In addition to detecting target words, par-
ticipants in the speech-in-noise experiment were required to rate subjec-
tively the intelligibility of the speech stimuli at the end of each 60-s trial.
Intelligibility was rated as a percentage of the total words understood
using a 10-point scale (0–10%, 10–20%, ... 90–100%).
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EEG acquisition and preprocessing
The EEG data were recorded using an ActiveTwo system (BioSemi)
from 128 scalp electrodes and two mastoid electrodes. The data were
low-pass filtered on-line below 134Hz and digitized at a rate of 512Hz.
Triggers indicating the start of each trial were recorded along with the
EEG. Subsequent preprocessing was conducted off-line in MATLAB; the
data were detrended by subtracting a 50th-order polynomial fit using a
robust detrending routine (de Cheveigné and Arzounian, 2018). The
data were then bandpass filtered using second-order, zero phase-shift
Butterworth filters between 0.3 and 30Hz, downsampled to 64Hz, and
rereferenced to the average of the mastoid channels. Excessively noisy
channels were detected using the spectrogram, kurtosis and probability
methods provided by the EEGLAB toolbox. Channels were marked for
rejection using a threshold value of three for each method. The channels
marked for rejection were interpolated from the surrounding clean
channels using the spline function from EEGLAB (Delorme and Makeig,
2004).

Indexing neurophysiological speech processing at different
hierarchical levels
Because our aim was to examine how visual information affects the neu-
ral processing of auditory speech at different hierarchical levels, we
needed to derive separable EEG indices of processing at these levels. To
do this, we followed work from Di Liberto et al. (2015), who modeled
EEG responses to speech in terms of different representations of that
speech. Specifically, they showed that EEG responses to speech were bet-
ter predicted using a representation of speech that combined both its
low-level acoustics (i.e., its spectrogram) and a categorical representation
of its phonetic features. The underlying idea is that EEG responses might
reflect the activity of neuronal populations in auditory cortex that are
sensitive to spectrotemporal acoustic fluctuations and of neuronal popu-
lations in association cortices (e.g., the superior temporal gyrus) that
may be invariant to spectrotemporal differences between utterances of
the same phoneme and, instead, are sensitive to that phoneme category
itself. As such, for the present study, we calculated two different repre-
sentations of the acoustic speech signal.

Spectrogram
This was obtained by first filtering the speech stimulus into 16 frequency
bands between 80 and 3000 Hz using a compressive gammachirp auditory
filter bank that models the auditory periphery. The gammachirp toolbox
was obtained by direct request to the corresponding author on the paper
(Irino and Patterson, 2006). Then the amplitude envelope for each fre-
quency band was calculated using the Hilbert transform, resulting in 16
narrow band envelopes forming the spectrogram representation.

Phonetic features
This representation was computed using the Prosodylab-Aligner
(Gorman et al., 2011), which, given a speech file and the corresponding
textual orthographical transcription, automatically partitions each word
into phonemes from the American English International Phonetic
Alphabet (IPA) and performs forced alignment (Yuan and Liberman,
2008), returning the starting and ending time points for each phoneme.
Manual checking of the alignment was then carried out and any errors
corrected. This information was then converted into a multivariate time
series that formed a binary array, where there is a one representing the
onset and duration of each phoneme and zeros everywhere else. To
describe the articulatory and acoustic properties of each phoneme a 19-
dimensional phonetic feature representation was formed using the map-
ping defined previously (Chomsky and Halle, 1968; Mesgarani et al.,
2014). This involves mapping each phoneme (e.g., /b/) into a set of pho-
netic features (e.g., bilabial, plosive, voiced, obstruent) and results in a
phonetic feature matrix of ones and zeros that is of dimension 19 (which
is the number of phonetic features) by time.

CCA
We wished to see how these different speech representations might be
reflected in EEG activity. Previous related research has relied on a regres-
sion-based approach that aims to reconstruct an estimate of some

univariate feature of the speech stimulus (e.g., its amplitude envelope)
from multivariate EEG responses (Crosse et al., 2015a, 2016b). However,
because we have multivariate speech representations, we sought to use a
method based on CCA (Hotelling, 1936; de Cheveigné et al., 2018),
which was implemented using the NoiseTools toolbox (http://audition.
ens.fr/adc/NoiseTools/).

CCA works by rotating two given sets of multidimensional data into
a common space in which they are maximally correlated. This linear
transformation is based on finding a set of basis vectors for each of the
given datasets such that the correlation between the variables, when they
are projected on these basis vectors, is mutually maximized. In our case,
our two datasets are the multidimensional stimulus representation, X tð Þ,
of size T � J1, where T is time and J1 is the number of features in that
representation (J1 ¼16 frequency bands of a spectrogram, or J1 ¼19
phonetic features), and an EEG data matrix Y tð Þ of size T � J2, where T
is time and J2 ¼ nxt , where n is the number of EEG channels (128) and
t is the number of time lags. The reason for using multiple time lags is
to allow for the fact that a change in the stimulus impacts the EEG at
several subsequent time lags. In our analysis we included time lags from
0–500ms, which at a sampling rate of 64Hz resulted in 32 time lags. For
these two data matrices, CCA produces transform matrices A and B of
sizes J1 � J0 and J2 � J0, respectively, where J0 is at most equal to the
smaller of J1 and J2. The optimization problem for CCA is formulated as
a generalized eigenproblem with the objective function:

0 CXY

CYX 0

� �
A
B

� �
¼ r 2 CXX 0

0 CYY

� �
;

where CXY is the covariance of the two datasets X and Y and CXX and
CYY are the autocovariances, and r is the components correlation. Ridge
regularization can be performed on the neural data to prevent overfitting
in CCA as follows (Vinod, 1976; Leurgans et al., 1993; Cruz-Cano and
Lee, 2014; Bilenko and Gallant, 2016):

0 CXY

CYX 0

� �
A
B

� �
¼ r 2 CXX 0

0 CYY 1 l I

� �
:

Only the EEG by time-lags matrix (CYY) is regularized (over the
range l = 1� 10�2, 1� 10�1..., 1� 104, 5� 104, 1� 105, 5� 105,
1� 106, 5� 106) since the stimulus representations are of low-dimen-
sionality (16 and 19 dimensions). The rotation matrices (A and B) are
learned on all trials except one and are then applied to the left-out data
which produces canonical components (CCs) for both the stimulus rep-
resentation and the EEG using the following equation:

XJ1 tð ÞA ! CCstim ! r  CCresp  YJ2 tð ÞB:

The regularization parameter was chosen as the value that gave the
highest correlation value (between the stimulus and EEG components)
for the average of all the test trials from the leave-one-out cross-valida-
tion procedure for each CC. Therefore, the optimal regularization value
could vary across components. The rotation weights A and B are trained
to find what stimulus features influence the EEG and what aspects of the
EEG are responsive to the stimulus, respectively, to maximize the corre-
lation between the two multivariate signals. When the rotation weights
are applied to the left-out data we get the CCs of the stimulus ðCCstimÞ
and of the response data ðCCrespÞ. The first pair of CCs define the linear
combinations of each data set with the highest possible correlation. The
next pair of CCs are the most highly correlated combinations orthogonal
to the first, and so-on (de Cheveigné et al., 2018).

Indexing multisensory integration using CCA
We wished to use CCA to identify any neural indices of multisensory
integration during the AV condition beyond what might be expected
from the unisensory processing of audio and visual speech. We sought
to do this by modeling the encoding of the speech representations in the
A and V EEG data and then investigating whether there is some
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difference in the speech-related activity in the AV EEG data which is not
present in either of the unisensory conditions. In other words, and in
line with a long history of multisensory research (Berman, 1961; Stein
and Meredith, 1993; Klucharev et al., 2003; van Wassenhove et al., 2005;
Besle et al., 2008), we sought to compare AV EEG responses to A1V
EEG responses using CCA and to attribute any difference [i.e., AV –
(A1V)] to multisensory processing.

To implement this, we summed the EEG data from matching A and
V stimuli (i.e., A and V stimuli that came from the same original AV
video; Fig. 1A). Thus, for each of the original 15 videos, we ended up
with AV EEG responses and corresponding A1V EEG responses.
Then, we used CCA to relate the multivariate speech representations
(spectrogram 1 phonetic features) to each of these two EEG responses
(AV and A1V). This provides two sets of rotation matrices, one
between the stimulus and the AV EEG and one between the stimulus
and the A1V EEG.

Now, if the scalp recorded EEG activity for the AV condition is sim-
ply the auditory and visual modalities being processed separately with
no integration occurring, then the A1V and AV EEG responses should
be essentially identical. And we would then expect the rotation matrices
learned on the A1V EEG data to be identical to those learned on the
AV EEG data. Carrying this logic even further, we would then expect to
see no differences in the canonical correlation values obtained from the
AV data when using the CCA rotation matrices found by training on
the A1V EEG data compared with the matrices found by training on
the AV EEG data (Fig. 1B). In other words, we compared the correlation
values obtained when we applied the AV weights (i.e., the A and B mat-
rices found by training on AV EEG data) to left-out AV data, with the
correlation values obtained when applying the A1V weights (i.e., the A
and B matrices found by training on A1V EEG data) to the AV data
(Fig. 1B). If there is some difference in the EEG response dynamics for
multisensory (AV) compared with the summed unisensory activity
(A1V) then we would expect this to have a significant effect on the ca-
nonical correlations since the A1V weights would not capture this
whereas the AV weights would. To measure the size of this difference we
calculated multisensory gain using the following equation:

MSIGain ¼
rAV;AV � rA1V;AV

jrAV;AV j1 jrA1V;AV j
;

where r is the CCs correlation, the first subscript represents the rota-
tions used and the second subscript represents the data on which those
rotations are applied (Fig. 1B). The difference in performance between

the models is normalized since the cortical tracking for very noisy speech
is typically much weaker than the tracking of clean speech (Ding and
Simon, 2013; Crosse et al., 2016b) and cortical tracking correlation val-
ues can also vary substantially across subjects because of differences in
cortical folding, skull thickness and scalp thickness. Thus, normalizing
the difference in correlations ensures that results from all subjects in
both conditions are represented such that they can be compared fairly.
One caveat of this normalization approach is that saturation effects (val-
ues tending toward61) can occur when two inputs have different signs,
thus it is important not to assume a normal distribution for this
measure.

Statistical analysis
All statistical comparisons were conducted using non-parametric
permutation with 10,000 repetitions such that no assumptions
were made about the sampling distribution (Combrisson and Jerbi,
2015). This was done by randomly assigning the values from the
two groups being compared (pairwise for the paired tests, and
non-pairwise for the unpaired tests) and calculating the difference
between the groups. This process was repeated 10,000 times to
form a null distribution of the group difference. Then the tail of
this empirical distribution is used to calculate the p value for the
actual data, and two-tailed tests are used throughout. Where multi-
ple comparisons were conducted p values were corrected using the
false discovery rate (FDR) method (Benjamini and Hochberg,
1995). All numerical values are reported as mean 6 SD.

Results
Robust indices of multisensory integration for the speech
spectrogram and phonetic features
To investigate the encoding of more complex multivariate repre-
sentations of the speech stimulus and to isolate measures of mul-
tisensory integration at different levels of the speech processing
hierarchy, we performed CCA on the AV EEG data using the
spectrogram and phonetic features, having trained the CCA on
(different) AV data and A1V data. We first sought to do this
separately for the spectrogram representation and the phonetic
features representation to see whether using either or both of
these representations might show evidence of multisensory inte-
gration. And we also sought to do this for both our clean speech
and noisy speech datasets.

Figure 1. Experiment set-up and analysis approach. The face of the speaker is blocked with an oval for publication but was not blocked for the experiment. A, The stimulus representations
used are the spectrogram and the phonetic features and are estimated directly from the speech stimuli. Below, EEG recordings corresponding to each condition. The unisensory A and V EEG are
summed to form an A1 V EEG data set. The EEG and speech representations are used as inputs to the CCA to determine the optimum weights for rotating the EEG and the given stimulus rep-
resentation for maximizing the correlation between the two. B, The model built using the A1 V data is then tested on the left-out AV data to determine the presence of a multisensory
effect.
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In both conditions (clean and noisy speech) and for both rep-
resentations (spectrogram and phonetic features), the correla-
tions for the first component were significantly higher than for
all other components. This suggests that the first component
captures a substantial percentage of the influence of the speech
on the EEG data. And, importantly, both representations showed
evidence of multisensory integration.

For the spectrogram representation, we found significant
multisensory effects (AV. A1V) for the first CC for speech in
quiet (p, 0.0001) and the first CC for speech in noise
(p, 0.0001, FDR corrected p values; Fig. 2A,B). Indeed, we
found multisensory effects for 15/16 components for speech in
quiet and for 15/16 components for speech in noise.

A similar pattern was observed when examining the stimu-
lus-EEG relationship using the phonetic feature representation
of speech. Specifically, we also found multisensory effects for the
first component for clean speech (p, 0.0001) and for speech in
noise (p, 0.0001, FDR corrected). And we found multisensory
effects for 13/18 components for speech in quiet and for all 18
components for speech in noise. Although there are 19 phonetic
features, there are only 18 components since CCA cuts of eigen-
values below a threshold, which in this case was 10�12, and the
last component of phonetic features did not survive this cutoff.

The fact that the spectrogram and phonetic feature represen-
tations produced qualitatively similar patterns of multisensory

integration was not surprising. This is because both representa-
tions are mutually redundant; a particular phoneme will have a
characteristic spectrotemporal signature. Indeed, if each utter-
ance of a phoneme were spoken in precisely the same way every
time, then the spectrogram and phonetic feature representations
would be functionally identical (Di Liberto et al., 2015). But, as
we discuss below, in natural speech different utterances of a par-
ticular phoneme will have different spectrograms. So, to identify
the unique contribution of “higher-level” neurons that are invari-
ant to these spectrotemporal differences and are sensitive to the
categorical phonemic features we will need to index the EEG
responses that are uniquely explained by the phonetic feature
representation while controlling for the spectrogram representa-
tion (see below, Isolating multisensory effects at the spectrotem-
poral and phonetic levels).

Spatiotemporal analysis of CCs: increased cross-modal
temporal integration and possible increased role for visual
cortex for speech in noise
The previous section showed clear evidence of multisensory inte-
gration in the component correlation values obtained from
CCA. But how can we further investigate these CCA components
to better understand the neurophysiological effects underlying
these numbers? One way is to examine how these multisensory
effects might vary as a function of the time lag between the

Figure 2. CCA analysis using the spectrogram and phonetic feature representation of the speech stimulus. A, B, The canonical correlations for the spectrogram representation for speech in
quiet and speech in noise, respectively. C, D, Canonical correlations for the phonetic feature representation for speech in quiet and speech in noise, respectively. The gray band represents an ap-
proximate chance level. All AV and A1 V components performed above chance level p, 0.0001 for speech in quiet, and for speech in noise p, 0.0001. The boxplot function with compact
format from MATLAB was used here. The edges of the boxplots display the 25th and 75th percentiles, and the median is marked by a black dot inside a white circle. A data point is determined
to be an outlier if it is greater than Q75th1 w x (Q75th – Q25th) or less than Q25th – w x (Q75th – Q25th), where w is the maximum whisker length and Q25th and Q75th are the 25th and 75th per-
centiles of the data.
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stimulus and EEG and how any effects at
different time lags might be represented
across the scalp. This is very much analo-
gous to examining the spatiotemporal
characteristics of event-related potentials
(ERPs) with EEG.

To investigate the spatiotemporal prop-
erties of the AV and A1V CCA models
we ran the CCA at individual time lags
from –1 to 1.5 s. We chose to focus our
analysis on the first three CCs. This was
mostly to allow investigation of the domi-
nant first component, but also to check
whether or not useful insights might be
gleaned from any of the subsequent com-
ponents. For the first component of the
spectrogram model, there was significant
differences between AV and A1V at
�300 to �200, 0–125, and at 500–750ms
for speech in quiet (FDR corrected). For
speech in noise there was significant differ-
ences at time shifts of �650 to �250 and
�60–750ms (Fig. 3A,D, FDR corrected).
For the second and third components
there was no clear pattern to the single
time-lag correlation as it was quite flat
across all time shifts for both clean and
noisy speech (Fig. 3B,C,E,F).

For the phonetic feature representation
we found significant differences between
AV and A1V at �370 to �125 and 90–
750ms for speech in quiet and for speech
in noise, there was significant differences
at time shifts of �300 to �125 and 300–
750ms (Fig. 3G,J, FDR corrected). For the
second component the pattern reflected
that of an onset response and while there
was no difference between AV and A1V
for speech in quiet there was a small win-
dow of difference for speech in noise at 0–
75 ms (Fig. 3H,K, FDR corrected). There
was no clear pattern to the single time-lag
correlation for the third component for both clean and noisy
speech (Fig. 3I,L). In general, the number of lags at which there
was a significant difference between AV and A1V was greater
for noisy speech than clean speech, which is consistent with find-
ings in Crosse et al. (2016b). The finding of significant differen-
ces at negative lags may be because of the fact that the EEG data
are time locked to the onset of the audio and since the visual in-
formation often precedes the audio (Chandrasekaran et al., 2009;
Schwartz and Savariaux, 2014), the AV data may contain some
information about the speech at “negative” time lags. Another
possibility, however, is that the effect at negative lags is because
of the autocorrelation of the stimulus and the autocorrelation of
the EEG. Nonetheless, in our multilag CCA we have only used
positive lags (0–500ms) and so any effects at negative lags will
not influence our overall results.

In summary, the single lag analysis reveals multisensory inter-
actions for both stimulus representations at similar ranges of
lags, mostly in the 0- to 500-ms range. It also shows the domi-
nance of the first component in capturing the relationship
between the EEG and stimulus, however for phonetic features
the second component also appears to display a time-locked

response. Nonetheless, there are many fewer time lags for which
we see multisensory interactions in the second and third compo-
nents. The first component for both spectrogram and phonetic
features shows an early peak which is likely related to an onset
response at around 100ms poststimulus. The phonetic features,
however, also show a second broader peak at around 400ms,
which is not present for the spectrogram representation.

To visualize the scalp regions underlying these components,
we calculated the correlation coefficient between each compo-
nent from the AV models for each time lag with each scalp elec-
trode of the AV EEG. This gives a sense of how strongly the data
on each channel has contributed to that component. The spatial
pattern for the first component revealed strong contributions
from channels over central and temporal scalp for speech in
quiet for both the spectrogram and phonetic feature representa-
tions. For speech in noise there was an additional correlation
with occipital channels, possibly indicating an increased contri-
bution from visual areas to multisensory speech processing in
noisy conditions. Occipital channels also made clear contribu-
tions for the second and third components for both conditions,
however because of the lack of a clear temporal response for
these components, we are hesitant to overinterpret this.

Figure 3. Correlations for the first three CCs using the spectrogram and phonetic feature representation of the speech
stimulus at single time shifts. A–C, The correlations using the spectrogram representation for the first three components
using the AV model and the A1 V model for speech in quiet, and D–F for speech in noise. G–I, The single time shift corre-
lations for the phonetic feature representation between the first three components for the AV and A1 V model with the
original raw AV EEG data for speech in quiet, and J–L for speech in noise. The respective topographies inset show the corre-
sponding spatial correlations between the corresponding component of the AV model and the AV EEG; pp, 0.001 FDR cor-
rected. The shaded region of the line plot marks the 95% confidence interval around the mean.
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Isolating multisensory effects at the spectrotemporal and
phonetic levels
As discussed above, the spectrogram and phonetic feature repre-
sentations are highly correlated with each other. As such, meas-
ures of how well each individual representation maps to the EEG
(as in Fig. 2) are difficult to interpret in terms of multisensory
effects at specific hierarchical levels. To pinpoint effects at each
specific level, we need to identify the unique contributions of the
spectrogram and the phonetic feature representations to the EEG
data. To do this, we first used the forward TRF model (Crosse et
al., 2016a) to predict the EEG using one stimulus representation
(e.g., the spectrogram). Time lags of 0–500ms were used in the
TRF analysis to match the delays used in the CCA analysis and
to optimize the TRF model performance, we conducted a param-
eter search (over the range l = 2�2, 2�1,... 229, 230) for the l
value that maximized the correlation between the original and
predicted EEG for each trial. This was done to ensure that we
used the best possible prediction of the EEG in the partialling out
procedure because we wanted to remove as much information as
possible about the representation that was being partialled out.
Then we subtracted this predicted EEG from the original EEG
signal. Then we fed this residual EEG into the CCA analysis pre-
viously described. We performed this analysis for all stimulus
representations. To ensure that there were no responses related
to the stimulus feature which was regressed out using the TRF
which could be extracted by CCA, we re-ran the CCA using the
spectrogram and EEG with the spectrogram regressed out. We
performed a similar analysis for the phonetic features. In both
cases, we found that the correlations are extremely small and
close to zero, which so leads us to believe that the partialling out
was effective (result not shown; Extended Data Fig. 4-1).

This should isolate the unique contribution (if any) provided
by the phonetic feature representation. Examining such a mea-
sure across our two conditions (clean speech and noisy speech)
allowed us to test the hypothesis that multisensory integration
effects should be particularly pronounced at the phonetic feature
level for speech in noise. We also performed a similar analysis
for the spectrogram representation to test its unique contribution
to the multisensory effect in quiet and noise. In this case, we
regressed out the phonetic feature representation from the EEG
and then related the residual EEG to the spectrogram using
CCA. Again, we did this for both speech in quiet and speech in
noise, to test for interaction effects on our multisensory integra-
tion measures between acoustic and articulatory representations
and speech in quiet and noise.

We limited our analysis here to the first CC because of its
dominant role in the above results, as well as to the fact that
it displays a greater consistency across subjects relative to the
other components (see below, Consistency of CCs across
subjects).

We found that multisensory gain at the level of acoustic proc-
essing (unique contribution from spectrogram) was significantly
greater than zero for both clean speech and noisy speech (Fig.
4A). However, there was no difference in this measure between
conditions (Fig. 4B; p=0.75), and so we cannot state whether
multisensory integration at the earliest cortical stages differs for
speech in quiet and noise. Meanwhile, multisensory gain at the
level of articulatory processing (unique contribution from pho-
netic features) was also significantly greater than zero for both
clean speech and speech in noise (Fig. 4C). Importantly however,
in line with our original hypothesis, there was a significant differ-
ence in this measure between conditions, with MSI gain being
larger for speech in noise than speech in quiet (Fig. 4D; p= 0.04).

This supports the idea that, when speech is noisy, the impact of
complementary visual articulatory information on phonetic fea-
ture encoding is enhanced.

We used R (R Core Team, 2016) and lme4 (Bates et al., 2014)
to perform a linear mixed effects analysis (Winter, 2013) with
fixed effects of model type (AV vs A1V), stimulus representa-
tion (spectrogram or phonetic features) and environment (quiet
or noisy) and random effect of subjects. In summary, we found a
main effect of model type (driven by larger component correla-
tions for AV vs A1V, p, 0.0001), and an interaction between
stimulus representation and environment (driven by a decrease
in correlation values for speech in noise vs speech in quiet for
phonetic features, whereas there is no such decrease in correla-
tions for the spectrogram representation across speech condi-
tions, p, 0.0001); however, the three-way interaction was not
significant (p=0.72).

We also related the target word detection performance to the
multisensory gains for both representations. To do this, we used
F1 scores, which are calculated as the harmonic mean of preci-
sion and recall. This allowed us to investigate whether the proba-
bility of detecting target words in the multisensory condition
exceeded the statistical facilitation produced by the unisensory
stimuli (Stevenson et al., 2014). For more information on how
this was calculated, see Crosse et al. (2016b). However, for both
representations there was no correlation across subjects between
the behavioural gain in target word detection and the multisen-
sory gain calculated from the EEG using CCA (spectrogram:
r= 0.004, p=0.98; phonetic features: r=0.04, p=0.86).

It is difficult to isolate phoneme specific responses from the
purely acoustic driven features, given their tightly linked associa-
tion. To address the possibility that other forms of acoustic rep-
resentations could explain this result, we re-ran two separate
analyses using the half-wave rectified spectrogram derivative
(Daube et al., 2019) and phonetic onsets (Brodbeck et al., 2018)
in place of the phonetic features to test whether these representa-
tions would lead to similar results as for the phonetic features.

Using the spectrogram derivative, we found no difference in
the gain between quiet and noisy speech conditions (Fig. 4F;
p= 0.1). Similarly, in the case of phonetic onsets we found no
effect (Fig. 4H; p=0.4).

We also related the phonetic features to EEG that had both
the spectrogram and spectrogram derivative partialled out. In
this case, we found that there was no longer a significant differ-
ence in the gain between quiet and noisy speech conditions (Fig.
4J; p=0.25). This is likely because of the fact that the size of the
original effect is small because of it coming from differences
between two models that are expected to be very similar in the
first place, i.e., the AV and A1V models. Therefore regressing
out these other representations reduces the correlation values
further, resulting in a reduction in sensitivity to small effects. On
top of this, we are comparing across different subjects, making
our statistics less sensitive than would be the case for a within-
subject design. Nevertheless, from Figure 4C, it is clear that the
phonetic feature representation has noticeably higher correlation
values compared with the correlation values for the other repre-
sentations. This shows that phonetic features are explaining
more variance in the EEG.

We then wanted to examine whether the multisensory inte-
gration effects at the phonetic feature level might be driven by
specific phonemes. More precisely, we wondered whether the
effect might be primarily driven by phonemes whose accompa-
nying visual articulations are particularly informative (e.g., /b/,
/p/, or /f/ compared with /g/ or /k/). To do this, we tested which
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phonemes were most correlated with the first CC. This involved
taking the first component arising from the rotation of the pho-
netic feature stimulus on the left-out data and then calculating
the correlation between this component and the time series of

each phoneme. If there is a high correlation between the compo-
nent and a particular phoneme then it suggests that this pho-
neme is strongly represented in that component and it plays a
role in driving the stimulus-EEG correlations that we have

Figure 4. Multisensory gain for different speech representations for speech in quiet and in noise. A, B, For the unique spectrogram representation (phonetic features partialled out) there is
no difference in gain, p= 0.75. C, D, For the unique phonetic features (spectrogram partialled out), we find a difference in gain between conditions, p= 0.04. E, F, Extended Data Figure 4-1
shows the effectiveness of the partialling out procedure, please refer to this figure for more information. Using the half-wave rectified spectrogram derivative we found no difference in gain
between quiet and noisy conditions (p= 0.1) and similarly for phonetic onsets there was no difference across conditions (G, H; p= 0.4). Using the phonetic features after partialling out the
spectrogram and spectrogram derivative, there is no difference in gain across quiet and noisy speech conditions (I, J; p= 0.25). Two-tailed unpaired permutation tests were used throughout.
The boxplot function with compact format from MATLAB was used for figure parts A, C, E, G. The edges of the boxplots display the 25th and 75th percentiles and the median is marked by a
black dot inside a white circle. The whiskers extend to the most extreme data points that the algorithm does not consider to be outliers and the outliers are plotted individually. For figure parts
B, D, F, H the default boxplot from MATLAB is used. The only difference in this case is that the median is displayed using a black horizontal line.
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reported here. This analysis revealed that phonemes such as /p/,
/f/, /w/, and /s/were most strongly represented in the first com-
ponent. In general, it also showed that consonants were more
correlated with the component than vowels (Fig. 5A,B), although
for speech in noise this effect was slightly less pronounced (Fig.
5B). To see these results in terms of visual articulatory features,
we grouped the phonemes into visemes (the visual analog of
phonemes), based on the mapping defined previously (Auer and
Bernstein, 1997). This showed that bilabials (/b/, /p/, and /m/)
and labio-dentals (/f/ and /v/) were the features most correlated
with the first component. Finally, we also checked that these
phoneme-component correlations were not simply explainable
as a function of the number of occurrences of each phoneme. To
check this, we tested for a relationship between the phoneme-
component correlations and the number of occurrences of each
phoneme (Fig. 5B, gray line). No correlation between the two
was found for either speech in quiet (p= 0.99) or speech in noise
(p=0.71).

This analysis highlights how different visual-
phonetic features contribute to our multisensory
effects for phonetic features. In particular we
find that bilabials and labiodentals have the high-
est correlation with the first CC, suggesting that
these features contribute most to the effects
shown here. This is line with early work examin-
ing the saliency of visual phonetic features which
found that place of articulation (i.e., the ability to
distinguish between labials, e.g., /p/, /b/, and
non-labials, e.g., /d/, /t/) was the most salient vis-
ual phonetic feature, followed by manner of
articulation (i.e., distinguishing between stops,
e.g., /d/ and fricatives, e.g., /f/) and voicing
(Walden et al., 1977).

Consistency of CCs across subjects
CCA finds stimulus-EEG matrix rotations on a
single subject basis. As such, for us to make gen-
eral conclusions about results gleaned from indi-
vidual CCs, we must examine how similar the
individual components are across subjects. To
do this, we took the components for each subject
and calculated the correlation (using Pearson’s r)
for every subject pair (Fig. 6). Given its domi-
nant role in capturing EEG responses to speech,
and in the results we have presented above, we
were particularly interested in consistency of
component one across subjects.

For the spectrogram, the first components of
the AV and A1V models were significantly
more correlated across subjects than all other
components for clean speech (p, 0.0001 for
both). For speech in noise the first component
of the AVmodel was not significantly more cor-
related across subjects than the second compo-
nent (p=0.055) but it had a significantly higher
correlation than the remainder of the compo-
nents (p, 0.0001). The first A1V component
for speech in noise was significantly more corre-
lated across subjects than all others (p, 0.001).

For the phonetic features model, a similar
pattern emerged for the clean speech condition
with the first components of the AV and A1V
models being significantly more correlated
across subjects than all other components

(p, 0.0001 for both). For noisy speech, the first component of the
AV model was again significantly better than all others (p, 0.02)
and similarly the first component of the A1V model had a higher
correlation than all others (p, 0.0001).

Altogether, we found that the first component is most correlated
across subjects, while later components are less correlated. This sug-
gests that the first component, which dominated our results above,
is also the most consistent component across subjects and, thus,
that it is capturing processes that are general across those subjects.
In contrast, the later components, as well as being smaller, are more
variable across subjects, and, accordingly, may not be capturing
similar underlying processes. This in turn can make results from
these later components more difficult to interpret.

Discussion
In this work, we have used a CCA-based framework for relating
multivariate stimulus representations to multivariate neural data

Figure 5. Correlation between phonemes and visemes time series with the first CC. A, The correlations for each pho-
neme from the clean speech data. B, The correlations for each phoneme from the speech in noise data. The gray line
plots the number of phoneme occurrences to show that it is not the case that the most frequent phonemes dominate
the data. C, The correlation between each viseme (groups of visually similar phonemes) and the first component. The
compact version of MATLAB’s boxplot function is used here (for description, see Fig. 4 caption).
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to study the neurophysiological encoding of multidimensional
acoustic and linguistic features of speech. Our results show sig-
nificant AV integration effects on the encoding of the spectro-
gram and phonetic features of both clean and noisy speech. This
provides evidence for the idea that AV speech integration is a
multistage process and that vision interacts with speech process-
ing at multiple stages.

Enhanced multisensory integration effects at the phonetic
level of processing for speech in noise
It is well known that the enhancement of auditory speech proc-
essing provided by visual speech varies with listening conditions
(Ross et al., 2007). However, the details of how visual speech
impacts auditory speech processing at different hierarchical lev-
els remains to be fully elucidated. There is a growing body of evi-
dence indicating that AV speech integration likely occurs over
multiple stages (Peelle and Sommers, 2015). In particular, it is
thought that visual speech provides temporal information about
the acoustic speech which can affect the sensitivity of auditory

cortex (Grant and Seitz, 2000; Okada et al., 2013), as well as pro-
vide complementary cues that contain articulatory information
which may be integrated with acoustic information in STS
(Beauchamp et al., 2004; Kayser and Logothetis, 2009; Nath and
Beauchamp, 2011).

In this study, we found evidence that AV speech integration
may operate differently under different listening conditions
[clean vs noisy (�9 dB) speech]. Specifically, for the encoding of
low-level spectrogram features, we found that the integration
effects are substantial for both speech in quiet and speech in
noise. These integration effects are likely to be primarily driven
by modulations of responses in early auditory cortex by temporal
information provided by visual speech, which often precedes the
auditory speech (Chandrasekaran et al., 2009; Schwartz and
Savariaux, 2014). This result is also in line with recent work dem-
onstrating multisensory benefits at the spectrotemporal level eli-
cited by a visual stimulus that did not contain articulatory detail,
dissociating the effect from access to higher-level articulatory
details (Plass et al., 2019). Furthermore, the lack of any difference
in the magnitude of these integration effects between clean and
noisy speech conditions suggests that the benefits of visual
speech provided at a low level of processing might be similar
regardless of acoustic conditions.

Using a higher-level phonetic feature representation, we
found that the AV integration effects vary weakly depending on
the acoustic conditions (after regressing out the contribution of
the spectrogram). Specifically, we found larger integration effects
for phonetic feature encoding in noisy speech than in clean
speech. We suggest that this benefit is likely to be driven by an
increased reliance on the visual articulations which help the lis-
tener to understand the noisy speech content by constraining
phoneme identity (Karas et al., 2019). In line with this, we also
show that the phonemes that most contribute to these results are
those that have particularly informative visual articulations (Fig.
5). Nevertheless, this effect is weakened by the removal of addi-
tional speech features (i.e., the spectrogram and half-wave spec-
trogram derivative). Future work will be required using a within-
subject design to investigate how integration at different stages
may or may not vary with environment conditions.

While recent research has challenged the notion that scalp
recorded responses to speech reflect processing at the level of
phonemes (Daube et al., 2019), our findings reveal a dissociation
in AV integration effects on isolated measures of acoustic and
phonetic processing across listening conditions. This seems diffi-
cult to explain based on considering acoustic features alone and
seems consistent with the idea of visual articulations influencing
the categorization of phonemes (Holt and Lotto, 2010). More
generally, we take this as a further contribution to a growing
body of evidence for phonological representations in cortical
recordings to naturalistic speech (Di Liberto et al., 2015;
Khalighinejad et al., 2017; Brodbeck et al., 2018; Yi et al., 2019;
Gwilliams et al., 2020).

One brain region likely involved in exploiting the articulatory
information when the speech signal is noisy is STS, which has
been shown to have increased connectivity with visual cortex in
noisy compared with quiet acoustic conditions (Nath and
Beauchamp, 2011). While it remains an open question as to how
much speech-specific processing is performed by visual cortex
(Bernstein and Liebenthal, 2014), there is some early evidence
supporting the notion that visual cortex might processes speech
at the level of categorical linguistic (i.e., phonological) units
(O’Sullivan et al., 2017; Hauswald et al., 2018). If true, visual cor-
tex would be in a position to relay such categorical, linguistic

Figure 6. Consistency of CCs across subjects for the spectrogram and the phonetic features
after partialling out the other representation. A, B, Correlations of AV and A1 V CCs across
subjects for the spectrogram representation for speech in quiet and speech in noise, respec-
tively. C, D, Correlation matrices visualizing the reduction in consistency in the AV component
activity across subjects as the component number increases for the spectrogram. E, F, The
correlation of the CCs for the phonetic feature representation across subjects. G, H,
Corresponding correlation matrices for speech in quiet and speech in noise, respectively.
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information to directly constrain phoneme identity, again, possibly
in STS. On top of this it has been shown that frontal cortex selec-
tively enhances processing of the lips during silent speech compared
with when the auditory speech is present, suggesting an important
role for visual cortex in extracting articulatory information from vis-
ual speech cues (Ozker et al., 2018). Thus, it is plausible that the
greater multisensory gain seen here for phonetic features when the
speech is noisy is underpinned by an enhancement of mouth proc-
essing in visual cortex which feeds information about the articula-
tions to STS where they influence the online processing of the
acoustic speech. However, follow-up studies are required to conclu-
sively demonstrate such an effect occurring.

Investigating hierarchical stages of speech processing, CCA
captures relationships between multidimensional stimuli
and EEG
The ERP technique has for a long time been used to advance our
understanding of the multisensory integration of speech (Stein
and Meredith, 1993; Molholm et al., 2002; Klucharev et al., 2003;
van Wassenhove et al., 2005; Saint-Amour et al., 2007; Bernstein
et al., 2008; Shahin et al., 2018). However, this approach is ill
suited for use with natural, continuous speech stimuli.

More recently, researchers have begun to use methods such
as multivariate regression (Crosse et al., 2016a) in the forward
direction (predicting neural data from the stimulus; Lalor and
Foxe, 2010; Ding and Simon, 2012; Zion Golumbic et al., 2013;
Di Liberto et al., 2015; O’Sullivan et al., 2017; Broderick et al.,
2018) and backward direction (stimulus reconstruction from
neural data; Mesgarani et al., 2009; Crosse et al., 2015a,b, 2016b),
which allows characterization of neural responses to natural
speech. However, regression models in their general form allow
only univariate-multivariate comparison, whereas with CCA one
can relate multivariate stimulus representations (discrete/contin-
uous) to multivariate neural responses. This is a useful advance
over current techniques to study speech processing since CCA
can use all features (of the stimulus and the neural response
data) simultaneously to maximize the correlation between the
speech representation and the neural data (de Cheveigné et al.,
2018). Importantly, this approach has allowed us to answer ques-
tions which we could not do with previous methods, such as the
impact of visual speech on auditory speech processing at differ-
ent stages.

Our results show significant multisensory interaction effects
in EEG responses based on the spectrogram and phonetic feature
representations of the speech signal and so provides support for
the multistage framework for AV speech integration. Examining
the relationship between the stimulus representations and EEG
data at individual time shifts reveals a peak in the correlation at
around 100ms poststimulus for both the spectrogram and pho-
netic feature representations. This is likely attributable to a sound
onset response. For the phonetic feature representation however,
there is also a second broad peak at around 300–600ms, whereas
for the spectrogram, there is no noticeable second peak. In terms
of the scalp regions which most contribute to the first compo-
nent, we found it to be dominated by central and temporal
regions for speech in quiet, and for speech in noise there is a
greater contribution from more parietal and occipital regions.
This is likely because of increased contributions from the visual
areas when the acoustic speech is noisy.

Limitations and future considerations
The use of CCA to study responses to natural speech has allowed
us to answer questions that we could not previously answer. The

use of natural and continuous stimuli is important to study the
neural systems involved in processing AV speech in the real
world (Hamilton and Huth, 2018). However, there are some
drawbacks in the experiment design which could be improved
on in the future. The current paradigm is made to be somewhat
unnatural by the presentation of A, V, and AV speech, each in
separate 1-min trials. It is possible therefore, that in the V condi-
tion, subjects find it very difficult to understand the speech and
so may result in a decrease in attention to the speech material (or
an increase for those subjects that are trying harder). If attention
to the speech in V trials differs in comparison with attention to
the visual aspect of the AV speech stimulus, then this could
impact our V EEG responses that are added to the auditory-only
EEG responses to generate an A1V EEG response. This issue is
common to almost all studies that examine multisensory integra-
tion effects of AV speech (and indeed many multisensory experi-
ments more generally).

One approach that has recently been suggested to overcome
this is the use of AV speech in every trial but varying the delay
between the auditory and visual speech across trials such that the
AV speech is still intelligible. This variability in delay can theo-
retically allow one to characterize the unisensory responses using
deconvolution (Metzger et al., 2020). This approach was used for
the presentation of single words but would be interesting to
apply it in a paradigm using continuous speech.

Nevertheless, the effect of interest in this study is the relative
change in the difference between the performance of an AV and
A1V model applied to AV EEG responses across quiet and
noisy speech conditions. We would not expect the difference in
performance to change with different speech conditions if the
improvement of the AV model was simply driven by a poor
A1V model because of a poor contribution from the V-only
response in the A1V EEG response.

In conclusion, this work has used a novel framework to study
multisensory interactions at the acoustic and phonetic levels of
speech processing. This has revealed that multisensory effects are
present for both the spectrogram and phonetic feature represen-
tations when the speech is in quiet or when it is masked by noise.
There is also evidence to suggest that these multisensory interac-
tions may vary with listening conditions, however, future work
will be required to examine this question in more detail.
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