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Abstract 

Seeing a speaker’s face benefits speech comprehension, especially in challenging listening conditions. This perceptual 

benefit is thought to stem from the neural integration of visual and auditory speech at multiple stages of processing, 

whereby movement of a speaker’s face provides temporal cues to auditory cortex, and articulatory information from 

the speaker’s mouth can aid recognizing specific linguistic units (e.g., phonemes, syllables). However it remains 

unclear how the integration of these cues varies as a function of listening conditions. Here we sought to provide insight 

on these questions by examining EEG responses to natural audiovisual, audio, and visual speech in quiet and in noise. 

Specifically, we represented our speech stimuli in terms of their spectrograms and their phonetic features, and then 

quantified the strength of the encoding of those features in the EEG using canonical correlation analysis. The encoding 

of both spectrotemporal and phonetic features was shown to be more robust in audiovisual speech responses then what 

would have been expected from the summation of the audio and visual speech responses, consistent with the literature 

on multisensory integration. Furthermore, the strength of this multisensory enhancement was more pronounced at the 

level of phonetic processing for speech in noise relative to speech in quiet, indicating that listeners rely more on 

articulatory details from visual speech in challenging listening conditions. These findings support the notion that the 

integration of audio and visual speech is a flexible, multistage process that adapts to optimize comprehension based 

on the current listening conditions.  
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Significance Statement  

During conversation, visual cues impact our perception of speech. Integration of auditory and visual speech is 

thought to occur at multiple stages of speech processing and vary flexibly depending on the listening conditions. 

Here we examine audiovisual integration at two stages of speech processing using the speech spectrogram and 

a phonetic representation, and test how audiovisual integration adapts to degraded listening conditions. We 

find significant integration at both of these stages regardless of listening conditions, and when the speech is 

noisy, we find enhanced integration at the phonetic stage of processing. These findings provide support for the 

multistage integration framework and demonstrate its flexibility in terms of a greater reliance on visual 

articulatory information in challenging listening conditions.  
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Introduction 

One prominent theory of speech perception is that speech is processed in a series of computational steps that follow a 

hierarchal structure, with different cortical regions being specialised for processing different speech features (Scott 

and Johnsrude, 2003; Hickok and Poeppel, 2007; DeWitt and Rauschecker, 2012). One key question is how visual 

input influences processing within this hierarchy. 

Behavioral studies have shown that seeing the face of a speaker improves speech comprehension (Sumby and Pollack, 

1954; Grant and Seitz, 2000; Ross et al., 2007). This behavioral advantage is thought to derive from two concurrent 

processing modes: a correlated mode, whereby visual speech dynamics provide information on auditory speech 

dynamics; and a complementary mode, where visual speech provides information on the articulatory patterns 

generating the auditory speech (Campbell, 2008). It seems plausible that the information provided by these two modes 

would influence levels of the auditory hierarchy differently. Indeed, this idea aligns well with a growing body of 

evidence indicating that audiovisual (AV) speech integration likely occurs over multiple stages (Schwartz et al., 2004; 

van Wassenhove et al., 2005; Eskelund et al., 2011; Peelle and Sommers, 2015; Baart et al., 2014). One recent 

perspective (Peelle and Sommers, 2015) suggests that these stages could include an early stage, where visual speech 

provides temporal cues about the acoustic signal (correlated mode), and a later stage, where visual cues that convey 

place and manner of articulation could be integrated with acoustic information to constrain lexical selection 

(complementary mode). Such early-stage integration could be mediated by direct projections from visual cortex that 

dynamically affect the sensitivity of auditory cortex (Grant and Seitz, 2000; Okada et al., 2013; Tye-Murray et al., 

2011; Calvert et al., 1997), whereas for later-stage integration, articulatory visual cues could be combined with 

acoustic information in supramodal regions such as the STS (Beauchamp et al., 2004; Kayser and Logothetis, 2009; 

Zhu and Beauchamp, 2017; Karas et al., 2019). 

While the evidence supporting multiple stages of audiovisual speech integration is compelling, there are several ways 

in which this multistage model needs to be further developed. First, much of the supporting evidence has been based 

on experiments involving simple (and often illusory) syllabic stimuli or short segments of speech. This has been very 

valuable, but it also seems insufficient to fully explore how a correlated mode of audiovisual integration might derive 

from dynamic visual cues impacting auditory cortical processing. Testing the model with natural speech will be 

necessary (Theunissen et al., 2000; Hamilton and Huth, 2018). Second, directly indexing neurophysiological 

representations of different acoustic and articulatory features will be important for validating and further refining the 
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key idea that integration happens at different stages. And third, it will be important to test the hypothesis that this 

multistage model is flexible, whereby the relative strength of integration effects at different stages might depend on 

the listening conditions and the availability of visual information.  

These are the goals of the present manuscript. In particular, we aim to build on recent work that examined how visual 

speech affected neural indices of audio speech dynamics using naturalistic stimuli (Luo et al., 2010; Golumbic et al., 

2013; Crosse et al., 2015a; Crosse et al., 2016b). We aim to do so by incorporating ideas from recent research showing 

that EEG and MEG are sensitive not just to the acoustics of speech, but also to the processing of speech at the level 

of phonemes (Di Liberto et al., 2015; Brodbeck et al., 2018; Khalighinejad et al., 2017). This will allow us to derive 

indices of dynamic natural speech processing at different hierarchical levels and to test the idea that audiovisual speech 

integration occurs at these different levels, in line with the multistage model (Peelle and Sommers, 2015). Finally, we 

also aim to test the hypothesis that, in the presence of background noise, there will be a relative increase in the strength 

of AV integration effects in EEG measures of phoneme-level encoding, reflecting an increased reliance on articulatory 

information when speech is noisy. To do all this, we introduce a new framework for indexing the electrophysiology 

of audiovisual speech integration based on canonical correlation analysis (CCA).  

Methods 

The EEG data analyzed here were collected as part of previous studies published by Crosse et al. (2015a; 2016b).  

Participants 

Twenty-one native English speakers (eight females; age range: 19-37 years) participated in the speech in quiet 

experiment. Twenty-one different participants (six females; age range: 21-35) took part in the speech in noise 

experiment. Written informed consent was obtained from each participant beforehand. All participants were native 

English speakers, were free of neurological diseases, had self-reported normal hearing, and had normal or corrected-

to-normal vision. The experiment was approved by the Ethics Committee of the Health Sciences Faculty at Trinity 

College Dublin, Ireland. 

Stimuli and procedure 

The speech stimuli were drawn from a collection of videos featuring a trained male speaker. The videos consisted of 

the speaker’s head, shoulders, and chest, centered in the frame. The speech was conversational-like and continuous, 
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with no prolonged pauses between sentences. Fifteen 60 s videos were rendered into 1280x720 pixel movies in 

VideoPad Video Editor (NCH Software). Each video had a frame rate of 30 frames per second, and the soundtracks 

were sampled at 48 kHz with 16-bit resolution. The intensity of each soundtrack, measured by root mean square, was 

normalized in MATLAB (MathWorks). For the speech in noise experiment, the soundtracks were additionally mixed 

with spectrally matched stationary noise to ensure consistent masking across stimuli (Ding and Simon, 2013; Ding et 

al., 2013) with SNR of -9 dB. The noise stimuli were generated in MATLAB using a 50th-order forward linear 

predictive model estimated from the original speech recording. Prediction order was calculated based on the sampling 

rate of the soundtracks (Parsons, 1987). 

In both experiments, stimulus presentation and data recording took place in a dark sound attenuated room with 

participants seated at a distance of 70 cm from the visual display. Visual stimuli were presented on a 19 inch CRT 

monitor operating at a refresh rate of 60 Hz. Audio stimuli were presented diotically through Sennheiser HD650 

headphones at a comfortable level of ~65 dB. Stimulus presentation was controlled using Presentation software 

(Neurobehavioral Systems). For the speech in quiet experiment each of the 15 speech passages was presented seven 

times, each time as part of a different experimental condition. Presentation order was randomized across conditions, 

within participants. While the original experiment had seven conditions, here we focus only on three conditions audio-

only (A), visual-only (V) and congruent audio-visual (AVc). For the speech in noise experiment, however, there were 

only 3 conditions (A, V and AV) and so the passages were ordered 1-15 and presented 3 times with the condition from 

trial-to-trial randomized. This was to ensure that each speech passage could not be repeated in another modality within 

15 trials of the preceding one. Participants were instructed to fixate on either the speaker’s mouth (V, AVc) or a gray 

crosshair (A) and to minimize eye blinking and all other motor activity during recording. 

For both experiments participants were required to respond to target words via button press. Before each trial, a target 

word was displayed on the monitor until the participant was ready to begin. All target words were detectable in the 

auditory modality except during the V condition, where they were only visually detectable. A target word was deemed 

have been correctly detected if subjects responded by button press within 0–2 seconds after target word onset. In 

addition to detecting target words, participants in the speech-in-noise experiment were required to rate subjectively 

the intelligibility of the speech stimuli at the end of each 60-s trial. Intelligibility was rated as a percentage of the total 

words understood using a 10-point scale (0–10%, 10–20%, ... 90–100%).  
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EEG acquisition and preprocessing 

The EEG data were recorded using an ActiveTwo system (BioSemi) from 128 scalp electrodes and two mastoid 

electrodes. The data were low-pass filtered on-line below 134 Hz and digitized at a rate of 512 Hz. Triggers indicating 

the start of each trial were recorded along with the EEG. Subsequent preprocessing was conducted off-line in 

MATLAB; the data were detrended by subtracting a 50th-order polynomial fit using a robust detrending routine (de 

Cheveigné and Arzounian, 2018). The data were then bandpass filtered using second-order, zero phase-shift 

Butterworth filters between 0.3-30 Hz, downsampled to 64 Hz, and rereferenced to the average of the mastoid 

channels. Channels contaminated by noise were recalculated by spline-interpolating the surrounding clean channels 

in EEGLAB (Delorme and Makeig, 2004). 

Indexing neurophysiological speech processing at different hierarchical levels 

Because our aim was to examine how visual information affects the neural processing of auditory speech at different 

hierarchical levels, we need to derive separable EEG indices of processing at these levels. To do this, we followed 

work from Di Liberto et al. (2015) who modeled EEG responses to speech in terms of different representations of that 

speech. Specifically, they showed that EEG responses to speech were better predicted using a representation of speech 

that combined both its low-level acoustics (i.e., its spectrogram) and a categorical representation of its phonetic 

features. The underlying idea is that EEG responses might reflect the activity of neuronal populations in auditory 

cortex that are sensitive to spectrotemporal acoustic fluctuations and of neuronal populations in association cortices 

(e.g., the superior temporal gyrus) that may be invariant to spectrotemporal differences between utterances of the same 

phoneme and, instead, are sensitive to that phoneme category itself. As such, for the present study, we calculated two 

different representations of the acoustic speech signal. 

1. Spectrogram: This was obtained by first filtering the speech stimulus into 16 frequency bands between 80 

and 3000 Hz using a compressive gammachirp auditory filter bank that models the auditory periphery (Irino 

and Patterson, 2006). Then the amplitude envelope for each frequency band was calculated using the Hilbert 

transform, resulting in 16 narrow band envelopes forming the spectrogram representation. 

2. Phonetic features: This representation was computed using the Prosodylab-Aligner (Gorman et al., 2011) 

which, given a speech file and the corresponding textual orthographical transcription, automatically partitions 

each word into phonemes from the American English International Phonetic Alphabet (IPA) and performs 
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forced-alignment (Yuan and Liberman, 2008), returning the starting and ending time-points for each 

phoneme. Manual checking of the alignment was then carried out and any errors corrected. This information 

was then converted into a multivariate time-series that formed a binary array, where there is a one 

representing the onset and duration of each phoneme and zeros everywhere else. To describe the articulatory 

and acoustic properties of each phoneme a 19-dimensional phonetic feature representation was formed using 

the mapping defined by (Mesgarani et al., 2014; Chomsky and Halle, 1968). This involves mapping each 

phoneme (e.g., /b/) into a set of phonetic features (e.g., bilabial, plosive, voiced, obstruent) and results in a 

phonetic feature matrix of ones and zeros that is of dimension 19 (which is the number of phonetic features) 

by time. 

Canonical correlation analysis 

We wished to see how these different speech representations might be reflected in EEG activity. Previous related 

research has relied on a regression-based approach that aims to reconstruct an estimate of some univariate feature of 

the speech stimulus (e.g., its amplitude envelope) from multivariate EEG responses (Crosse et al., 2015a; Crosse et 

al., 2016b). However, because we have multivariate speech representations, we sought to use a method based on 

canonical correlation analysis (CCA, de Cheveigne et al., 2018; Hotelling, 1936) which was implemented using the 

NoiseTools toolbox (http://audition.ens.fr/adc/NoiseTools/).  

CCA works by rotating two given sets of multidimensional data into a common space in which they are maximally 

correlated. This linear transformation is based on finding a set of basis vectors for each of the given data sets such that 

the correlation between the variables, when they are projected on these basis vectors, is mutually maximized. In our 

case, our two data sets are the multidimensional stimulus representation, 𝑋(𝑡), of size 𝑇 × 𝐽1, where 𝑇 is time and 𝐽1 

is the number of features in that representation (𝐽1 = 16 frequency bands of a spectrogram, or 𝐽1 = 19 phonetic 

features), and an EEG data matrix 𝑌(𝑡) of size 𝑇 × 𝐽2, where 𝑇 is time and 𝐽2 = 𝑛 𝑥 𝜏, where 𝑛 is the number of EEG 

channels (128) and 𝜏 is the number of time-lags. The reason for using multiple time lags is to allow for the fact that a 

change in the stimulus impacts the EEG at several subsequent time lags. In our analysis we included time-lags from 

0-500 ms, which at a sampling rate of 64 Hz resulted in 32 time-lags. For these two data matrices, CCA produces 

transform matrices 𝐴 and 𝐵 of sizes 𝐽1 × 𝐽0 and 𝐽2 × 𝐽0 respectively, where 𝐽0 is at most equal to the smaller of 𝐽1 and 

𝐽2. The optimization problem for CCA is formulated as a generalized eigenproblem with the objective function: 
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(
0 𝐶𝑋𝑌

𝐶𝑌𝑋 0
) (

𝐴

𝐵
)  =  𝜌2 (

𝐶𝑋𝑋 0
0 𝐶𝑌𝑌

) 

Where 𝐶𝑋𝑌 is the covariance of the two datasets X and Y and 𝐶𝑋𝑋 and 𝐶𝑌𝑌 are the autocovariances, and 𝜌 is the 

components correlation. Ridge regularization can be performed on the neural data to prevent overfitting in CCA as 

follows (Vinod, 1976; Cruz-Cano and Lee, 2014; Leurgans et al., 1993; Bilenko and Gallant, 2016): 

(
0 𝐶𝑋𝑌

𝐶𝑌𝑋 0
) (

𝐴

𝐵
)  =  𝜌2 (

𝐶𝑋𝑋 0
0 𝐶𝑌𝑌 + 𝜆𝐼

) 

The rotation matrices (𝐴 and 𝐵) are learned on all trials except one and are then applied to the left-out data which 

produces canonical components (CC’s) for both the stimulus representation and the EEG using the following equation:  

𝑋𝐽1(𝑡)A → 𝐶𝐶𝑠𝑡𝑖𝑚  →  𝜌 ← 𝐶𝐶𝑟𝑒𝑠𝑝 ←  𝑌𝐽2(𝑡)𝐵 

The rotation weights 𝐴 and 𝐵 are trained to find what stimulus features influence the EEG and what aspects of the 

EEG are responsive to the stimulus, respectively, in order to maximize the correlation between the two multivariate 

signals. When the rotation weights are applied to the left-out data we get the canonical components of the stimulus 

(𝐶𝐶𝑠𝑡𝑖𝑚) and of the response data (𝐶𝐶𝑟𝑒𝑠𝑝). The first pair of canonical components define the linear combinations of 

each data set with the highest possible correlation. The next pair of CCs are the most highly correlated combinations 

orthogonal to the first, and so-on (de Cheveigne et al., 2018).  

Indexing multisensory integration using CCA 

We wished to use CCA to identify any neural indices of multisensory integration during the AV condition beyond 

what might be expected from the unisensory processing of audio and visual speech. We sought to do this by modelling 

the encoding of the speech representations in the audio-only (A) and visual-only (V) EEG data and then investigating 

if there is some difference in the speech-related activity in the AV EEG data which is not present in either of the 

unisensory conditions. In other words, and in line with a long history of multisensory research, we sought to compare 

AV EEG responses to A+V EEG responses using CCA and to attribute any difference (i.e., AV – (A+V)) to 

multisensory processing.  

To implement this, we summed the EEG data from matching audio-only and visual-only stimuli (i.e., audio-only and 

visual-only stimuli that came from the same original AV video; Fig. 1A). Thus, for each of the original 15 videos, we 

ended up with AV EEG responses and corresponding A+V EEG responses. Then, we used CCA to relate the 
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multivariate speech representations (spectrogram + phonetic features) to each of these two EEG responses (AV and 

A+V). This provides two sets of rotation matrices, one between the stimulus and the AV EEG and one between the 

stimulus and the A+V EEG.  

Now, if the scalp recorded EEG activity for the AV condition is simply the auditory and visual modalities being 

processed separately with no integration occurring, then the A+V and AV EEG responses should be essentially 

identical. And we would then expect the rotation matrices learned on the A+V EEG data to be identical to those 

learned on the AV EEG data. Carrying this logic even further, we would then expect to see no differences in the 

canonical correlation values obtained from the AV data when using the CCA rotation matrices found by training on 

the A+V EEG data compared with the matrices found by training on the AV EEG data (Fig. 1B). In other words, we 

compared the correlation values obtained when we applied the AV weights (i.e., the A and B matrices found by 

training on AV EEG data) to left-out AV data, with the correlation values obtained when applying the A+V weights 

(i.e., the A and B matrices found by training on A+V EEG data) to the AV data (Fig. 1B). If there is some difference 

in the EEG response dynamics for multisensory (AV) compared with the summed unisensory activity (A+V) then we 

would expect this to have a significant effect on the canonical correlations since the A+V weights would not capture 

this whereas the AV weights would. To measure the size of this difference we calculate multisensory gain using the 

following equation: 

𝑀𝑆𝐼𝐺𝑎𝑖𝑛 =  
𝜌𝐴𝑉,𝐴𝑉 − 𝜌𝐴+𝑉,𝐴𝑉

𝜌𝐴+𝑉,𝐴𝑉

  

Where 𝜌 is the canonical components correlation, the first subscript represents the rotations used and the second 

subscript represents the data on which those rotations are applied (Fig. 1B). 
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Figure 1. Experiment set-up and analysis approach. A. The stimulus representations used are the spectrogram and 

the phonetic features and are estimated directly from the speech stimuli. Below, the EEG recordings corresponding 

to each condition. The unisensory A and V EEG are summed to form an A+V EEG data set. The EEG and speech 

representations are used as inputs to the CCA in order to determine the optimum weights for rotating the EEG and 

the given stimulus representation for maximizing the correlation between the two. B. The model built using the A+V 

data is then tested on the left-out AV data in order to determine the presence of a multisensory effect.   

Statistical analysis 

All statistical comparisons were conducted using non-parametric permutation with 10,000 repetitions such that no 

assumptions were made about the sampling distribution (Combrisson and Jerbi, 2015). This was done by randomly 

assigning the values from the two groups being compared (pairwise for the paired tests, and non-pairwise for the 

unpaired tests) and calculating the difference between the groups. This process was repeated 10,000 in order to form 

a null distribution of the group difference. Then the tail of this empirical distribution is used to calculate the p-value 

for the actual data, and two-tailed tests are used throughout. Where multiple comparisons were carried out p-values 

were corrected using the False Discovery Rate (FDR) method (Benjamini and Hochberg, 1995). All numerical values 

are reported as mean ± SD. 
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Results 

Robust indices of multisensory integration for the speech spectrogram and phonetic features 

To investigate the encoding of more complex multivariate representations of the speech stimulus and to isolate 

measures of multisensory integration at different levels of the speech processing hierarchy we  performed CCA on the 

AV EEG data using the spectrogram and phonetic features, having trained the CCA on (different) AV data and A+V 

data. We first sought to do this separately for the spectrogram representation and the phonetic representation to see if 

using either or both of these representations might show evidence of multisensory integration. And we also sought to 

do this for both our clean speech and noisy speech datasets. 

In both conditions (clean and noisy speech) and for both representations (spectrogram and phonetic features) the 

correlations for the first component were significantly higher than for all other components. This suggests that the first 

component captures a substantial percentage of the influence of the speech on the EEG data. And, importantly, both 

representations showed evidence of multisensory integration. 

For the spectrogram representation, we found significant multisensory effects (AV>A+V) for the first canonical 

component for speech in quiet (p<0.0001) and the first canonical component for speech in noise (p<0.0001, FDR 

corrected p-values; Fig. 2A, B). Indeed we found multisensory effects for 15/16 components for speech in quiet and 

for 15/16 components for speech in noise.   

A similar pattern was observed when examining the stimulus-EEG relationship using the phonetic feature 

representation of speech. Specifically, we also found multisensory effects for the first component for clean speech 

(p<0.0001) and for speech in noise (p<0.0001, FDR corrected). And we found multisensory effects for 13/18 

components for speech in quiet and for all 18 components for speech in noise.   

The fact that the spectrogram and phonetic feature representations produced qualitatively similar patterns of 

multisensory integration was not surprising. This is because both representations are mutually redundant; a particular 

phoneme will have a characteristic spectrotemporal signature. Indeed, if each utterance of a phoneme were spoken in 

precisely the same way every time, then the spectrogram and phonetic feature representations would be functionally 

identical (Di Liberto et al., 2015). But, as we discuss below, in natural speech different utterances of a particular 

phonemes will have different spectrograms. So, to identify the unique contribution of “higher-level” neurons that are 

invariant to these spectrotemporal differences and are sensitive to the categorical phonemic features we will need to 
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index the EEG responses that are uniquely explained by the phonetic feature representation whilst controlling for the 

spectrogram representation. (Please see the section on Isolating multisensory effects at the spectrotemporal and 

phonetic levels below). 

 

Figure 2. CCA analysis using the spectrogram and phonetic feature representation of the speech stimulus. A-B The 

canonical correlations for the spectrogram representation for speech in quiet and speech in noise respectively. C-D 

canonical correlations for the phonetic feature representation for speech in quiet and speech in noise respectively. 

The gray band represents an approximate chance level. All AV and A+V components performed above chance level 

p<0.0001 for speech in quiet, and for speech in noise p<0.0001. 
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Spatiotemporal analysis of canonical components: increased cross-modal temporal integration and possible 

increased role for visual cortex for speech in noise 

The previous section showed clear evidence of multisensory integration in the component correlation values obtained 

from CCA. But how can we further investigate these CCA components to better understand the neurophysiological 

effects underlying these numbers? One way is to examine how these multisensory effects might vary as a function of 

the time-lag between the stimulus and EEG and how any effects at different time-lags might be represented across the 

scalp. This is very much analogous to examining the spatiotemporal characteristics of event-related potentials with 

EEG. 

To investigate the spatiotemporal properties of the AV and A+V CCA models we ran the CCA at individual time-lags 

from -1s to 1.5s. We chose to focus our analysis on the first three canonical components. This was mostly to allow 

investigation of the dominant first component, but also to check whether or not useful insights might be gleaned from 

any of the subsequent components. For the first component of the spectrogram model, there was significant differences 

between AV and A+V at -300-(-200) ms, 0-125 ms and at 500-750 ms for speech in quiet (FDR corrected). For speech 

in noise there was significant differences at time shifts of -650-(-250) ms, -60-750 ms (Fig. 3A, D, FDR corrected). 

For the second and third components there was no clear pattern to the single time-lag correlation as it was quite flat 

across all time shifts for both clean and noisy speech (Fig. 3B, C, E, and F). 

For the phonetic feature representation we found significant differences between AV and A+V at -370-(-125) ms, 90-

750 ms for speech in quiet and for speech in noise there was significant differences at time shifts of -300-(-125) ms 

and 300-750 ms (Fig. 3G, J, FDR corrected). For the second component the pattern reflected that of an onset response 

and while there was no difference between AV and A+V for speech in quiet there was a small window of difference 

for speech in noise at 0-75ms (Fig. 3H, K, FDR corrected). There was no clear pattern to the single time-lag correlation 

for the third component for both clean and noisy speech (Fig. 3I, L). In general, the number of lags at which there was 

a significant difference between AV and A+V was greater for noisy speech than clean speech, which is consistent 

with findings in Crosse et al. (2016b). The finding of significant differences at negative lags may be due to the fact 

that the EEG data is time-locked to the onset of the audio and since the visual information often precedes the audio 

(Schwartz and Savariaux, 2014; Chandrasekaran et al., 2009), the AV data may contain some information about the 

speech at ‘negative’ time-lags. Another possibility however, is that the effect at negative lags is due to the 
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autocorrelation of the stimulus and the autocorrelation of the EEG. Nonetheless, in our multi-lag CCA we have only 

used positive lags (0-500 ms) and so any effects at negative lags will not influence our overall results.  

To visualize the scalp regions underlying these components we calculated the correlation coefficient between each 

component from the AV models for each time lag with each scalp electrode of the AV EEG. This gives a sense of 

how strongly the data on each channel has contributed to that component. The spatial pattern for the first component 

revealed strong contributions from channels over central and temporal scalp for speech in quiet for both the 

spectrogram and phonetic feature representations. For speech in noise there was an additional correlation with occipital 

regions, possibly indicating an increased contribution from visual areas to multisensory speech processing in noisy 

conditions. Occipital channels also made clear contributions for the second and third components for both conditions, 

however due to the lack of a clear temporal response for these components, we are hesitant to over-interpret this.  
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Figure 3. Correlations for the first three canonical components using the spectrogram and phonetic feature 

representation of the speech stimulus at single time shifts. A-C. The correlations using the spectrogram representation 

for the first three components using the AV model and the A+V model for speech in quiet, and D-F for speech in noise. 

G-I The single time shift correlations for the phonetic feature representation between the first three components for 

the AV and A+V model with the original raw AV EEG data for speech in quiet, and J-I for speech in noise. The 

respective topographies inset show the corresponding spatial correlations between the corresponding component of 

the AV model and the AV EEG. *p<0.001 FDR corrected. 

Isolating multisensory effects at the spectrotemporal and phonetic levels 

As discussed above, the spectrogram and phonetic feature representations are highly correlated with each other. As 

such, measures of how well each individual representation maps to the EEG (as in Fig. 2) are difficult to interpret in 

terms of multisensory effects at specific hierarchical levels. To pinpoint effects at each specific level, we need to 

identify the unique contributions of the spectrogram and the phonetic feature representations to the EEG data. To do 

this, we first regressed out the spectrogram representation from the EEG and then related the residual EEG to the 

phonetic features using CCA (Bednar and Lalor, 2020). This should isolate the unique contribution (if any) provided 

by the phonetic feature representation. Examining such a measure across our 2 conditions (clean speech and noisy 

speech) allowed us to test the hypothesis that multisensory integration effects should be particularly pronounced at 

the phonetic feature level for speech in noise. We also performed a similar analysis for the spectrogram representation 

to test its unique contribution to the multisensory effect in quiet and noise. In this case, we regressed out the phonetic 

feature representation from the EEG and then related the residual EEG to the spectrogram using CCA. Again, we did 

this for both speech in quiet and speech in noise, to test for interaction effects on our multisensory integration measures 

between acoustic and articulatory representations and speech in quiet and noise. 

We limited our analysis here to the first canonical component due to its dominant role in the above results, as well as 

to the fact that it displays a greater consistency across subjects relative to the other components (please see next section 

of results and Fig. 6). 

We found that multisensory gain at the level of acoustic processing (unique contribution from spectrogram) was 

significantly greater than zero for both clean speech and noisy speech (Fig. 4A). However, there was no difference in 

this measure between conditions (Fig 4B; p = 0.92), suggesting that multisensory integration at the earliest cortical 
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stages was similar for speech in quiet and noise. Meanwhile, multisensory gain at the level of articulatory processing 

(unique contribution from phonetic features) was also significantly greater than zero for both clean speech and speech 

in noise (Fig 4C). Importantly however, in line with our original hypothesis, there was a significant difference in this 

measure between conditions, with MSI gain being larger for speech in noise than speech in quiet (p = 0.02). This 

supports the idea that, when speech is noisy, the impact of complementary visual articulatory information on phonetic 

feature encoding is specifically enhanced.  

 

Figure 4. Multisensory gain for different speech representations for speech in quiet and in noise. A, B. For the unique 

spectrogram representation (phonetic features partialled out) there is no difference in gain, p=0.92. C, D.  For the 

unique phonetic features (spectrogram partialled out) we find a difference in gain between conditions, p=0.02 

(Unpaired permutation test for both). 

We then wanted to examine whether the multisensory integration effects at the phonetic feature level might be driven 

by specific phonemes. More precisely, we wondered if the effect might be primarily driven by phonemes whose 

accompanying visual articulations are particularly informative (e.g., /b/, /p/ or /f/ compared to /g/ or /k/). To do this, 

we tested which phonemes were most correlated with the first canonical component. This involved taking the first 

component arising from the rotation of the phonetic feature stimulus on the left-out data and then calculating the 

correlation between this component and the time-series of each phoneme. If there is a high correlation between the 

component and a particular phoneme then it suggests that this phoneme is strongly represented in that component and 

it plays a role in driving the stimulus-EEG correlations that we have reported here. This analysis revealed that 
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phonemes such as /p/, /f/, /w/, and /s/ were most strongly represented in the first component. In general, it also showed 

that consonants were more correlated with the component than vowels (Fig. 5A, B), although for speech in noise this 

effect was slightly less pronounced (Fig. 5B). To see these results in terms of visual articulatory features, we grouped 

the phonemes into visemes (the visual analog of phonemes), based on the mapping defined in (Auer Jr and Bernstein, 

1997). This showed that bilabials (/b/,/p/ and /m/) and labio-dentals (/f/, and /v/) were most the features most correlated 

with the first component. Finally, we also checked that these phoneme-component correlations were not simply 

explainable as a function of the number of occurrences of each phoneme. To check this, we tested for a relationship 

between the phoneme-component correlations and the number of occurrences of each phoneme (Fig. 5B grey line). 

No correlation between the two was found for either speech in quiet (p = 0.99) or speech in noise (p = 0.71). 

 

Figure 5. Correlation between phonemes and visemes time-series with the first canonical component. A. The 

correlations for each phoneme from the clean speech data. B. The correlations for each phoneme from the speech in 
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noise data. The grey line plots the number of phoneme occurrences to show that it is not the case that the most frequent 

phonemes dominate the data. C. The correlation between each viseme (groups of visually similar phonemes) and the 

first component. 

Consistency of canonical components across subjects 

CCA finds stimulus-EEG matrix rotations on a single subject basis. As such, for us to make general conclusions about 

results gleaned from individual canonical components, we must examine how similar the individual components are 

across subjects. To do this, we took the components for each subject and calculated the correlation (using Pearson’s 

r) for every subject pair (Fig. 6). Given its dominant role in capturing EEG responses to speech, and in the results we 

have presented above, we were particularly interested in consistency of component one across subjects.  

For the spectrogram, the first components of the AV and A+V models were significantly more correlated across 

subjects than all other components for clean speech (p<0.0001 for both). For speech in noise the first component of 

the AV model was not significantly more correlated across subjects than the second component (p=0.055) but it had 

a significantly higher correlation than the remainder of the components (p<0.0001). The first A+V component for 

speech in noise was significantly more correlated across subjects than all others (p<0.001). 

For the phonetic features model, a similar pattern emerged for the clean speech condition with the first components 

of the AV and A+V models being significantly more correlated across subjects than all other components (p<0.0001 

for both). For noisy speech, the first component of the AV model was again significantly better than all others (p<0.02) 

and similarly the first component of the A+V model had a higher correlation than all others (p<0.0001). 

Altogether, we found that the first component is most correlated across subjects, while later components are less 

correlated. This suggests that the first component, which dominated our results above, is also the most consistent 

component across subjects and, thus, that it is capturing processes that are general across those subjects. In contrast, 

the later components, as well as being smaller, are more variable across subjects, and, accordingly, may not be 

capturing similar underlying processes. This in turn can make results from these later components more difficult to 

interpret. 
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Figure 6. Consistency of canonical components across subjects for the spectrogram and the phonetic features after 

partialling out the other representation. A, B. Correlations of AV and A+V canonical components across subjects for 

the spectrogram representation for speech in quiet and speech in noise respectively. C, D. Correlation matrices 

visualizing the reduction in consistency in the AV component activity across subjects as the component number 

increases for the spectrogram. E, F. The correlation of the canonical components for the phonetic feature 

representation across subjects, and G, H. the corresponding correlation matrices for speech in quiet and speech in 

noise respectively.  

Discussion 

In this work, we have used a CCA-based framework for relating multivariate stimulus representations to multivariate 

neural data in order to study the neurophysiological encoding of multidimensional acoustic and linguistic features of 

speech. Our results show significant audiovisual integration effects on the encoding of the spectrogram and phonetic 

features of both clean and noisy speech. Importantly, these multisensory effects are enhanced at the phonetic level for 
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speech in noise, supporting the hypothesis that listeners increasingly rely on visual articulatory information when 

speech is noisy.  

Enhanced multisensory integration effects at the phonetic-level of processing for speech in noise   

It is well known that the enhancement of auditory speech processing provided by visual speech varies with listening 

conditions (Ross et al., 2007). However, the details of how visual speech impacts auditory speech processing at 

different hierarchical levels remains to be fully elucidated. There is a growing body of evidence indicating that AV 

speech integration likely occurs over multiple stages (Peelle and Sommers, 2015). In particular, it is thought that visual 

speech provides temporal information about the acoustic speech which can affect the sensitivity of auditory cortex 

(Grant and Seitz, 2000; Okada et al., 2013), as well as provide complementary cues that contain articulatory 

information which may be integrated with acoustic information in superior temporal sulcus (STS) (Beauchamp et al., 

2004; Kayser and Logothetis, 2009; Nath and Beauchamp, 2011). 

In this study, we found that audiovisual speech integration operates differently under different listening conditions 

(clean vs noisy (-9dB) speech). Specifically, for the encoding of low-level spectrogram features, we found that the 

integration effects are substantial for both speech in quiet and speech in noise. These integration effects are likely to 

be primarily driven by modulations of responses in early auditory cortex by temporal information provided by visual 

speech, which often precedes the auditory speech (Schwartz and Savariaux, 2014; Chandrasekaran et al., 2009). This 

result is also in line with recent work demonstrating multisensory benefits at the spectrotemporal level elicited by a 

visual stimulus that did not contain articulatory detail - dissociating the effect from access to higher-level articulatory 

details (Plass et al., 2019). Furthermore, the lack of any difference in the magnitude of these integration effects 

between clean and noisy speech conditions suggests that the benefits of visual speech provided at a low-level of 

processing might be similar regardless of acoustic conditions. 

In contrast with this, using a higher-level phonetic feature representation, we found that the AV integration effects are 

different depending on the acoustic conditions (after regressing out the contribution of the spectrogram). Specifically, 

we found significantly larger integration effects for phonetic feature encoding in noisy speech than in clean speech. 

We suggest that this benefit is likely to be driven by an increased reliance on the visual articulations which help the 

listener to understand the noisy speech content by constraining phoneme identity (Karas et al., 2019). In line with this, 
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we also show that the phonemes that most contribute to these results are those that have particularly informative visual 

articulations (Fig. 5).  

While recent research has challenged the notion that scalp recorded responses to speech reflect processing at the level 

of phonemes (Daube et al., 2019), our findings reveal a sharp dissociation in AV integration effects on isolated 

measures of acoustic and phonetic processing across listening conditions. This seems difficult to explain based on 

considering acoustic features alone and seems consistent with the idea of visual articulations influencing the 

categorization of phonemes (Holt and Lotto, 2010). More generally, we take this as a further contribution to a growing 

body of evidence for phonological representations in cortical recordings to naturalistic speech (Brodbeck et al., 2018; 

Di Liberto et al., 2015; Gwilliams et al., 2020; Khalighinejad et al., 2017; Yi et al., 2019). 

One brain region likely involved in exploiting the articulatory information when the speech signal is noisy is superior 

temporal sulcus (STS) which has been shown to have increased connectivity with visual cortex in noisy compared 

with quiet acoustic conditions (Nath and Beauchamp, 2011). While it remains an open question as to how much 

speech-specific processing is performed by visual cortex (Bernstein and Liebenthal, 2014), there is a some early 

evidence supporting the notion that visual cortex might processes speech at the level of categorical linguistic (i.e., 

phonological) units (O'Sullivan et al., 2017; Hauswald et al., 2018). If true, visual cortex would be in a position to 

relay such categorical, linguistic information to directly constrain phoneme identity, again, possibly in STS. On top 

of this it has been shown that frontal cortex selectively enhances processing of the lips during silent speech compared 

with when the auditory speech is present, suggesting an important role for visual cortex in extracting articulatory 

information from visual speech cues (Ozker et al., 2018). Thus it is plausible that the greater multisensory gain seen 

here for phonetic features when the speech is noisy is underpinned by an enhancement of mouth processing in visual 

cortex which feeds information about the articulations to STS where they influence the online processing of the 

acoustic speech.  

Investigating hierarchical stages of speech processing - CCA captures relationships between multi-dimensional 

stimuli and EEG  

The event related potential (ERP) technique has for a long time been used to advance our understanding of the 

multisensory integration of speech (van Wassenhove et al., 2005; Shahin et al., 2018; Klucharev et al., 2003; Bernstein 
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et al., 2008; Molholm et al., 2002; Meredith and Stein, 1993; Saint-Amour et al., 2007). However, this approach is ill 

suited for use with natural, continuous speech stimuli. 

More recently, researchers have begun to use methods such as multivariate regression (Crosse et al., 2016a) in the 

forward direction (predicting neural data from the stimulus, Di Liberto et al., 2015; O'Sullivan et al., 2017; Lalor and 

Foxe, 2010; Ding and Simon, 2012; Golumbic et al., 2013; Broderick et al., 2018) and backward direction (stimulus 

reconstruction from neural data, Crosse et al., 2015a; Crosse et al., 2016b; Crosse et al., 2015b; Mesgarani et al., 

2009), which allows characterization of neural responses to natural speech. However, regression models in their 

general form allow only univariate-multivariate comparison, whereas with CCA one can relate multivariate stimulus 

representations (discrete/continuous) to multivariate neural responses. This is a useful advance over current techniques 

to study speech processing since CCA can use all features (of the stimulus and the neural response data) 

simultaneously to maximize the correlation between the speech representation and the neural data (de Cheveigne et 

al., 2018). Importantly, this approach has allowed us to answer questions which we could not do with previous 

methods, such as the impact of visual speech on auditory speech processing at different stages.  

Our results show significant multisensory interaction effects in EEG responses based on the spectrogram and phonetic 

feature representations of the speech signal and so provides support for the multistage framework for audiovisual 

speech integration. Examining the relationship between the stimulus representations and EEG data at individual time-

shifts reveals a peak in the correlation at around 100 ms post-stimulus for both the spectrogram and phonetic feature 

representations. This is likely attributable to a sound onset response. For the phonetic feature representation however, 

there is also a second broad peak at around 300-600 ms whereas for the spectrogram there is no noticeable second 

peak. In terms of the scalp regions which most contribute to the first component, we found it to be dominated by 

central and temporal regions for speech in quiet, and for speech in noise there is a greater contribution from more 

parietal and occipital regions. This is likely due to increased contributions from the visual areas when the acoustic 

speech is noisy.  

Conclusion 

This work has used a novel framework to study multisensory interactions at the acoustic and phonetic levels of speech 

processing. This has revealed that multisensory effects are present for both the spectrogram and phonetic feature 

representations when the speech is in quiet or when it is masked by noise. However, for speech in noise, multisensory 
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interactions are significantly larger at the phonetic-feature level suggesting that in noisy conditions, the listener relies 

more on higher-level articulatory information from visual speech. 
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