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Abstract—Individuals respond faster to presentations of bisensory stimuli (e.g. audio-visual targets) than to pre-
sentations of either unisensory constituent in isolation (i.e. to the auditory-alone or visual-alone components of
an audio-visual stimulus). This well-established multisensory speeding effect, termed the redundant signals
effect (RSE), is not predicted by simple linear summation of the unisensory response time probability distribu-
tions. Rather, the speeding is typically faster than this prediction, leading researchers to ascribe the RSE to a
so-called co-activation account. According to this account, multisensory neural processing occurs whereby
the unisensory inputs are integrated to produce more effective sensory-motor activation. However, the typical
paradigm used to test for RSE involves random sequencing of unisensory and bisensory inputs in a mixed
design, raising the possibility of an alternate attention-switching account. This intermixed design requires partic-
ipants to switch between sensory modalities on many task trials (e.g. from responding to a visual stimulus to an
auditory stimulus). Here we show that much, if not all, of the RSE under this paradigm can be attributed to slowing
of reaction times to unisensory stimuli resulting from modality switching, and is not in fact due to speeding of
responses to AV stimuli. As such, the present data do not support a co-activation account, but rather suggest that
switching and mixing costs akin to those observed during classic task-switching paradigms account for the
observed RSE. � 2020 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

A commonly deployed method for studying the behavioral

effects of multisensory integration involves the use of a

simple speeded reaction time (RT) task, whereby study

participants are asked to respond as quickly as possible

when presented with a unisensory stimulus (e.g. a tone

or a briefly presented disk on a screen) or with

combined bisensory stimuli (e.g. the synchronized

presentation of a tone and a disk). In turn, the speed of

responding to the bisensory (multisensory) input is

compared to the response speeds to the constituent

unisensory inputs. It has been consistently shown that
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responses to such bisensory stimuli are substantially

faster than responses to the unisensory inputs

(Hershenson, 1962; Schroger and Widmann, 1998;

Molholm et al., 2002; Megevand et al., 2013; Nidiffer

et al., 2016). This has been termed the ‘redundant signals

effect’ (RSE) and two plausible models have generally

been forwarded to account for this speeding. The first is

statistical facilitation (commonly referred to as the ‘‘race

model” (Raab, 1962)). Under this account, each of the

sensory signals in a bisensory pairing is independently

processed and, on any particular trial, the RT is deter-

mined by whichever sensory system is first to trigger a

response – the winner of the race, so to speak. The result

of such a process over the course of multiple repetitions

would lead to a bisensory RT distribution shifted toward

shorter RTs relative to the distributions of either of the

component unisensory RTs, but also one that is entirely

predictable from said unisensory RT distributions. An

alternate account, the so-called coactivation model

(Miller, 1982), is based on the notion that the two initially
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separated sensory signals interact neurally prior to their

detection, and that this integrated signal will tend to reach

response threshold more quickly than either of the iso-

lated signals. Under this account, multisensory speeding

could potentially be faster than would be predicted from

the unisensory RT distributions and would thereby ‘‘vio-

late” the aforementioned race model.

The majority of prior RSE studies have supported the

latter account, with few exceptions (Otto and Mamassian,

2012, 2017; Van der Stoep et al., 2015; Gondan and

Minakata, 2016). To the extent of our knowledge, almost

all multisensory tests of the race model in neurotypical

adult populations have shown violation of the race model

(Miller, 1982, 1986; Diederich and Colonius, 1987;

Harrington and Peck, 1998; Molholm et al., 2002;

Murray et al., 2005; Mahoney et al., 2015). As such, the

field has generally embraced the notion that the RSE

reflects multisensory neural integrative processes (i.e.

the coactivation account) (Molholm et al., 2002; Foxe

and Schroeder, 2005; Murray et al., 2005; Foxe and

Molholm, 2009; Sperdin et al., 2009; Molholm and Foxe,

2010; Brandwein et al., 2011; Senkowski et al., 2011).

This interpretation has been further bolstered by results

from neurophysiological studies, which show evidence

for multisensory integration during very early sensory pro-

cessing (Molholm et al., 2002, 2006; Senkowski et al.,

2006). That is, both electrophysiological and neuroimag-

ing studies in humans and monkeys have suggested that

audio-visual and audio-somatosensory inputs are inte-

grated during the earliest phases of sensory processing,

in hierarchically early cortical regions that were once

thought to support only sensory-specific processing

(Foxe et al., 2000, 2002; Schroeder and Foxe, 2002,

2005; Kayser et al., 2008; Boyle et al., 2017). Single unit

studies in the superior colliculus of anesthetized cats have

also shown enhanced responses to bisensory inputs, and

of particular relevance here, these enhancements are

greatest during the early phase of the response and show

shortened neural response latencies (Rowland et al.,

2007). While these results also suggest a potential coac-

tivation account and a speeding of neural responses, it is

important to point out that they have not been explicitly

linked to behavioral outcomes.

A central design aspect, however, of almost all RSE

studies in humans is that instances of unisensory and

bisensory stimuli are intermixed randomly with variable

inter-stimulus intervals (ISIs). In this way, participants

cannot anticipate which sensory stimulus, or

combination thereof, is about to occur and thus employ

stimulus-specific processing strategies, and the use of

highly variable ISIs counters the tendency for observers

to try to anticipate the timing of the next stimulus. This

random presentation pattern has been highlighted as a

key aspect of such designs (Gondan and Minakata,

2016). However, there is an inherent issue with such mix-

ing designs that calls into question a purely multisensory

coactivation account for the RSE (Gondan et al., 2004).

Every unisensory stimulus in a mixed block either triggers

a repetition of a sensory-motor response mapping or a

reconfiguration of the sensory-motor response mapping.

That is, sometimes unisensory auditory inputs are fol-
lowed by another auditory input, and one could conceive

of such instances as a ‘‘repeat” task. Sometimes, how-

ever, an auditory input is followed by a visual input (and

vice versa), and here one might conceive of this as a

‘‘switch” task. Following this line of thinking, the tradition-

ally used random presentation RSE design might be con-

sidered similar to more traditional task-switching

paradigms (Rogers and Monsell, 1995).

If task switching, and thus switching attentional sets or

task rules, is playing a prominent role in the emergence of

the RSE under intermixed multisensory stimulation

conditions, a number of simple predictions should hold.

First, we should observe so-called ‘mixing costs’ (Rubin

and Meiran, 2005; Wylie et al., 2009): the slowing of

responses to each task in a task-switching design relative

to ‘‘pure” blocks (i.e. blocks of stimuli where only one task

is required). Second, we should observe ‘switching costs’

(Wylie et al., 2003b,a; 2004): the slowing of responses to,

for example, auditory stimuli that immediately follow visual

stimuli (and vice versa) compared to trial sequences in

which stimuli are repeated. One would also predict that

reaction times to the bisensory audio-visual stimulus

should not be affected by these switching or mixing costs

because they contain both stimulus types and therefore,

no task ‘switch’ is strictly necessary.

Here, we test this alternate account of the RSE by

testing the race model while accounting for the

sequencing of stimuli (i.e. separating ‘‘switch” and

‘‘repeat” trials). We also conducted a set of ‘‘pure” block

conditions (i.e. auditory-alone, visual-alone and audio-

visual-alone stimulus sequences) to test for ‘‘mixing”

costs by comparing RT patterns during these pure

blocks to those observed during mixed randomly

interleaved blocks of stimuli. If something akin to task-

switching is present in classic RSE experimental

designs, then it will be necessary to reassess the

meaning and potential applications of race model

analyses.
EXPERIMENTAL PROCEDURES

Subjects

Thirty-seven healthy adults (mean age = 28.3, SD= 6.6,

21 females, 16 males) participated. The Research

Subjects Review Board of the University of Rochester

approved the experimental procedures. Each participant

provided written informed consent in accordance with

the tenets laid out in the Declaration of Helsinki.

Individuals were included in this study only if they were

between the ages of 18 and 48 years, did not carry a

diagnosis of a neurological or neurodevelopmental

disorder, had healthy or corrected vision, were not

hearing impaired, were not experiencing symptoms of

post-concussive syndrome, were not dependent on

drugs or alcohol, and were not under the influence of

drugs or alcohol at the time of the study. Participants

completed a questionnaire to confirm that inclusion

criteria were met. Participants received a modest fee

($14 per hour) for their efforts.
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Stimuli

The auditory (A) stimulus consisted of a 70 dB SPL,

1000 Hz tone (60 ms duration, 5 ms rise/fall times)

presented over both channels of circumaural

Sennheiser HD 600 headphones. The visual (V)
stimulus consisted of a red disk presented for 60 ms,

subtending 2.8 degrees in diameter at 85 cm viewing

distance appearing on a dark gray background on an

Acer Predator Z35 monitor. This stimulus was presented

at an eccentricity of 2.9 degrees directly above a central

fixation cross. The central fixation cross was present for

the duration of all stimulus presentations. The

audiovisual (AV) stimulus consisted of the simultaneous

presentation of the above two stimuli.
Procedure

Participants were seated comfortably in a darkened room

and asked to respond as quickly as possible to each

stimulus presentation. Responses to stimuli were made

with a button press with the right thumb on an

ergonomic Steelseries 3GC game controller. While this

controller was not rigorously engineered for

psychophysics experiments, in house testing

demonstrated a precision of 9.7 ms between a button

press and the registration of a button press by our

stimulus delivery software.

Four block types were presented: unisensory-audio

(pure A), unisensory-visual (pure V), bisensory-

audiovisual (pure AV), and a mixed block of stimuli. The

pure A, pure V, and pure AV blocks contained

repetitions of only the A, V, or AV stimulus,

respectively. Mixed blocks contained a randomly

interleaved sequence of the three stimulus types (the

classic RSE experimental design). This design and the

parameters used are depicted in Fig. 1.

Mixed and pure blocks were randomly sequenced for

each participant and 50 stimuli were presented in each

block. Participants performed a minimum of 4 of each of

the pure block types, for a total of 200 presentations of

each of the pure stimuli. A minimum of 18 mixed blocks

was presented, which resulted in approximately 100

presentations of each of the mixed block conditions.

Throughout all blocks, ISIs were randomly varied

between 1000 and 2400 ms with a square distribution to

prevent anticipatory responding. Participants were

encouraged to take as many breaks as desired between

blocks to prevent fatigue. Stimuli were presented using

Presentation software (Neurobehavioral Systems Inc.,

Berkeley, CA). Participants were asked to maintain

fixation on the small, continuously presented fixation

cross for all blocks, including pure A blocks.

Furthermore, participants were explicitly instructed to

press the button as quickly as possible for all stimulus

conditions. Compliance with instructions was monitored

during the experiment with a live stream from an

EyeLink 1000 (SR Research, Ottawa, Canada) infrared

eye-tracking camera. If participants were observed

looking away from the screen, blinking excessively, or

otherwise not participating according to instructions,

they received further instruction from the investigators
and corresponding blocks were flagged for exclusion.

Camera video data were not stored.
Data acquisition and definitions

RT data were extracted from log files generated by the

Presentation software and processed using custom,

open-source MATLAB (MathWorks Inc., Natick, MA)

scripts. Throughout this report we will refer to events

presented in mixed blocks as either repeat or switch.

That is, when the target stimulus is the same as the

prior stimulus (i.e. V followed by V, A followed by A,
and AV followed by AV), it is considered a repeat trial.

When the target is different from the prior (i.e. A
followed by V, V followed by A, and A or V followed by

AV), it is considered a switch trial.

Stimuli from mixed blocks were also grouped without

consideration of prior and target combinations. This is

the ‘‘classic” mixed block approach to grouping stimuli

from RSE paradigms, which we refer to as Mix A, Mix

V, and Mix AV. We refer to stimuli grouped from pure

blocks as Pure A, Pure V, and Pure AV. Pure, Mix,

Repeat, and Switch comprise the main conditions of

interest in our analyses. Mixed block AV stimuli were

sorted into repeat and switch conditions for the purpose

of comparison to unisensory stimuli. AV? AV was

treated as a repeat. A? AV and V? AV are

technically partial repeats and partial switches in a

parallel processing account. For the sake of our

analyses, we considered them to be switches and

grouped them together to form a switch AV condition.

AV? A and AV? V were grouped as neither a repeat

nor a switch, as such a determination would, in an

attentional shifting account, rely upon the stimulus

presented prior to the AV stimulus. These latter

conditions were included in the Mix A and Mix V
groupings and included in pair-wise comparison tests

described later.
Data preparation

In order to reject outlier trials potentially due to

undesirable response strategies, RTs outside of the

middle 95th percentile of their respective conditions

were excluded from analyses. This method avoided

both arbitrary cutoff limits and nonparametric data

cleaning approaches (Ulrich and Miller, 1994; Gondan

and Minakata, 2016) while also accounting for both

inter-participant and inter-condition variability. This data

cleaning step was conducted prior to all analyses includ-

ing distribution analyses.
Reaction time and distribution analyses

In an initial survey of the RT data, distributions of the

participant median RTs for each of the stimulus

conditions were visualized with kernel density estimate

plots, which can be seen in Fig. 2. Distributions of the

median RTs for each condition were subjected to pair-

wise, two-tailed nonparametric permutation tests with

Tmax multiple comparisons correction. This analysis was

conducted in tandem with a distribution shift analysis



Fig. 1. Sensory modality and reaction time task. The task consisted of the sequential presentation of a red disc (2.8� in diameter) on a monitor (V), a

1000 Hz tone played through headphones (A), or the simultaneous combination of the two (AV). Participants were instructed to respond as quickly

as possible to any perceived stimulus with a button press. All stimulus durations were 60 ms. 1000–2400 ms elapsed between each stimulus. A

fixation cross was persistently displayed on the monitor for all trials. Stimuli were presented in either mixed or pure blocks. Pure blocks contained

repetitions of a single stimulus for the duration of the block. Mixed blocks contained a randomized sequence of A, V, and AV stimulus presentations.

Mixed block conditions are defined by a combination of target stimulus and prior stimulus. These conditions can be grouped into repeats (A? A,

V? V, AV? AV) and switches (V? A, A? V, A? AV, V? AV). *AV? A and AV? V do not fall exclusively within either of these groups.
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(Rousselet et al., 2017), which compares the morpholog-

ical features of two distributions. The shift test utilizes

Harrell-Davis quantile estimations of two distributions as

comparative anchor points to provide a description of

the morphological differences between distributions

(Wilcox, 1995; Wilcox et al., 2014). For each comparison

of distributions, respective pairs of quantile values are

compared using bootstrapped permutation tests and then

subtracted to generate a shift function. 19 quantile points

(5% to 95% in 5% increments) were compared for each

distribution and comparisons utilized an alpha value of

0.05 with Hochberg multiple comparisons corrections

(Hochberg, 1988).

Mix cost values were generated for each participant

for A and V conditions by subtracting median pure RT

values from repeat RT values, respectively. Switch cost

values were generated for A and V conditions for each

participant by subtracting median repeat RT values from

switch RT values for each sensory modality,

respectively. Distributions of switch cost values were

subjected to multiple comparison permutation tests

using the abovementioned Tmax correction method. All

statistical analyses were performed in MATLAB:

pairwise permutation tests were conducted using the

PERMUTOOLS (Crosse et al., 2020a) open-source pack-

age available at https://github.com/mickcrosse/PERMU-

TOOLS, and distribution-shift tests (Rousselet et al.,
2017) were conducted using open-source code available

at https://github.com/GRousselet/matlab_stats.
Race model analyses

After data preparation, the maximum and minimum RT

values for each participant across all conditions were

used to quantize each participant’s condition-wise RT

distributions into 21 quantiles which were used to

generate cumulative distribution functions (CDFs) and

race models based on the unisensory CDFs. Condition-

wise CDFs and race models were obtained by availing

of all RTs within these upper and lower limits, except

those that we considered outliers (i.e., RTs outside the

middle 95th percentile). For visualization of RT

distributions at the group level, CDFs and race models

were averaged or Vincentized (Vincent, 1912; Ratcliff,

1979) over participants within each quantile and are illus-

trated here with bootstrapped 95% confidence intervals.

RTs were grouped based on their sequence (Pure,

mix, repeat, switch) and used to generate and test

separate race models within each group. The so-called

‘‘race model” is applied to test whether the observed

RSE (in this case bisensory AV inputs) can be predicted

by a simple probability summation account. If this is the

case, then the following equation will hold true.

Violations of the following equation imply that simple

https://github.com/mickcrosse/PERMUTOOLS
https://github.com/mickcrosse/PERMUTOOLS
https://github.com/GRousselet/matlab_stats


Fig. 2. Participant median RT distributions. Distributions of participant median RT values are separated into race model analysis groups (A=Pure,

B=Mix,C=Repeat, andD=Switch) and target stimuli (E=AudioVisual (magenta),F=Auditory (blue), andG=Visual (red)) to illustrate theeffectsof

sequenceconditionsonRTdistributions.Kerneldensityplots illustrate thedensityofpopulationRTscatterplots.AandVareshownabove theorigin line.AV is

invertedandshownbelow theorigin line.All threeplotsdepictpositivedensity.ScatterplotsshowthedistributionofparticipantmedianRTs.Eachpointdepicts

themedian valueof aparticipant for that condition.Boxandwhisker plots demonstrate themedian values (bold central line) of eachdistribution and2%,25%,

75%, and 98% quantile points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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parallel and independent unisensory stimulus processing

is an insufficient account for reaction time phenomena in

RSE paradigms.
P RTA[V � tjAVð Þ ¼ P RTA � tjAð Þ þ P RTV � tjVð Þ
� P RTA � tjAð Þ � P RTV � tjVð Þ

We utilized the above equation to generate a race

model prediction for each participant. This particular

manifestation of the race model is known as Raab’s

model (Raab, 1962), which assumes independence

between the A and V processing streams. Independence

is statistically imparted by the subtraction of the joint

probability term to the right of the equation. We used this

model not necessarily because of its functional implica-

tions, but because the joint probability term reduces

the built-in statistical facilitation of the race model predic-

tion. This increases the likelihood of detecting multisen-

sory speeding with respect to the model’s prediction.

Biasing the race model in this way presents a more con-

servative approach to testing for violation of the race

model.

To validate the assumptions of our race model, a

simulation of the race model was constructed for each

participant by randomly selecting both A target RTs and

V target RTs from their respective RT pools 1000 times.

The minimum RT value was chosen for each pairing of

A and V RTs and a CDF was generated from that

distribution of minima. For each participant, this

simulated CDF was compared to the race model

function at each of the 21 quantile points using a

permutation test with Tmax correction. No significant

differences were found at any quantile.

Violation of the race model was measured using two

methods. The first method utilized Tmax corrected

permutation tests that compared the race function to the

AV CDF at each quantile for each group. This yielded

the identification of quantile ranges where the race

model and AV distribution were statistically dissimilar.

We utilize the Tmax correction method (Westfall and

Young, 1993; Blair et al., 1994) for all multiple compar-

isons analyses, as this has been shown to control for

Type 1 error at a desired level and to be suitable in partic-

ular for testing the race model (Gondan, 2010). The sec-

ond method entailed the estimation of race model

violation (RMV), which was computed by subtracting the

race model from AV CDF values at each quantile per

group. The positive area contained within each partici-

pant’s RMV curve was estimated using a trapezoidal inte-

gration function as it is common practice to interpret only

the positive area under the curve (AUC) as an index of

facilitative multisensory interactions (e.g., Miller, 1986;

Nozawa et al., 1994). Participant RMV area measures

were tested by group for deviation from zero with permu-

tation tests. Note, inclusion of both the positive and neg-

ative AUC is qualitatively equivalent to using only the

positive AUC (e.g., Nidiffer et al., 2016), because the pos-

itive and negative AUCs are inversely proportional

(Crosse et al., 2019, Fig. 4B).

All race model analyses were conducted in MATLAB

using routines based on the RaceModel open-source
toolbox (Crosse et al., 2020b), available at https://github.-

com/mickcrosse/RaceModel.
RESULTS

Median reaction time findings

Median RTs were determined for each participant for

each experimental condition, and the resultant

distributions were visualized using kernel density plots,

which are presented alongside scatter plots with

overlaid box and whisker plots in Fig. 2, panels A–D. RT

statistics, including the median, median absolute

deviation (MAD), which quantifies variance of the

median, and the range of all conditions and groups, can

be found in Table 1. Tmax corrected p-values taken from

the distribution comparison analysis and Cohen’s d are

reported in this section. Statistical comparisons between

the conditions of main interest addressing this study’s

primary hypotheses are reported in what follows.

However, a large number of between-condition

comparisons was possible, and a comprehensive

illustration and tabulation of all such combinations can

be found in Fig. 3. While Fig. 3 shows the results of an

additional non-parametric distribution shift test above

the black unity line, we will report results only from the

paired permutation tests. The purpose of the shift tests

was to add an additional measure to interrogate the

obvious morphological differences between the

distributions seen in Fig. 2. The degree to which the

results of these tests agree or disagree is discussed

below.

In considering how RT is affected by stimulus

(auditory, visual, audiovisual) and by condition (blocked,

mix, repeat, and switch), we see in Table 1 that

descriptively, AV RTs were uniformly the fastest, and

that the fastest median RT here was in response to the

AV stimulus in the Pure condition. Comparing the RTs

across stimuli in the mix condition, AV RTs were

statistically faster than V RTs (t= �27.23, p= 0,

d= 2.33) and A RTs (t= �8.39, p= 0, d= 0.73).

However, when pure condition stimuli were compared,

AV RTs were found to be significantly faster than V RTs

(t= �14.09, p= 0, d= 1.8), whereas while there was

a numeric difference for the AV versus A condition, this

did not reach statistical significance (t= �2.18,

p= 0.16, d= 0.23). Fig. 2 illustrates the distributions of

RTs across participants for each of the stimulus

conditions.

Further parsing the RT data, Pure RTs were

significantly faster than Repeat RTs (Pure A vs. Repeat

A t= �4.52, p= 0.0036, d= �0.46 | Pure V vs.

Repeat V t= �8.89, p= 0.00, d= �0.93) and Repeat

RTs were faster than Mix RTs (Repeat A vs. Mix A
t= 6.04, p= 0.0001, d= �0.29 | Repeat V vs. Mix V
t= 5.45, p= 0.0003, d= �0.48). Furthermore, Mix

RTs were faster than Switch RTs (Mix A vs. Switch A
t= �5.47, p= 0.0003, d= �0.65 | Mix V vs. Switch V
t= �5.95, p= 0.0002, d= �0.43). However, AV? A
RTs were not statistically different from Repeat A RTs

(t= �2.58, p= 0.25, d= 0.13) and were statistically

faster than Mix A RTs (t= 4.58, p= 0.0031,

https://github.com/mickcrosse/RaceModel
https://github.com/mickcrosse/RaceModel


Table 1. Distribution statistics

Median MAD Min Max Avg Trials

Pure AV 186.6 17.0 159.0 257.4 204

Mix AV 199.3 16.5 155.0 270.2 227

Repeat AV 197.8 16.3 154.1 256.0 75

Switch AV 199.5 17.2 155.7 276.8 149

A? AV 197.0 18.5 153.5 269.0 74

V? AV 202.2 16.8 158.3 281.1 75

Pure A 192.5 20.7 158.1 255.3 208

Mix A 218.1 24.9 155.8 298.5 228

Repeat A 205.2 23.3 157.8 277.8 76

Switch A 239.1 42.2 156.4 364.7 76

AV? A 212.3 25.3 153.9 294.4 76

Pure V 227.4 11.3 188.9 282.6 205

Mix V 253.0 18.9 201.1 338.1 227

Repeat V 244.5 14.7 200.8 318.2 76

Switch V 263.8 25.1 199.0 344.9 74

AV? V 252.9 21.7 204.0 350.5 76

Participant population median RT distributions in milliseconds as described by median values, median absolute deviation (MAD), and the range of data (Min and Max). 37

participant medians for each of the above conditions were included in the generation of these population median values. The Average Trials column shows average trials

used per participant after data cleaning.
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d= �0.2). On the other hand, AV? V RTs were slower

than Repeat V (t= �4.68, p= 0.0029, d= 0.51) and not

statistically different from Mix V (t= �1.20, p= 0.97,

d= 0.056).

The lack of statistical difference in comparisons of

mixed block AV conditions to other mixed block AV
conditions makes it clear that responses to AV stimuli

were less affected by the sequence of stimuli than were

responses to A and V stimuli alone (Repeat AV vs. Mix

AV t= 2.32, p= 0.39, d= �0.071 | Mix AV vs. Switch

AV t= �2.70, p= 0.19, d= �0.043 | Repeat AV vs.

Switch AV t= �2.56, p= 0.26, d= �0.11).

Nevertheless, the permutation tests show that Pure AV
RTs were faster than Repeat AV RTs (t= �3.61,

p= 0.026, d= �0.25) and all other mixed-block-

derived AV RTs (Pure AV vs. Mix AV t= �5.23,

p= 0.0005, d= �0.31 | Pure AV vs. Switch AV
t= �5.82, p= 0.0002, d= �0.35). However, it should

be noted that the shift tests did not show significant

differences in some of these comparisons of Pure AV to

other AV conditions.

To summarize the incongruity between the two tests,

the shift test found similarity while the permutation test

found difference in comparisons of Pure AV to Repeat

AV, Pure AV to Switch AV, and Pure AV to A? AV,
comparisons of Repeat A to Mix AV, Repeat A to

Repeat AV, Repeat A to Switch AV, Repeat A to A?
AV, Repeat A to V? AV, and Repeat A to Mix A,
comparisons of AV? A to Pure A and AV? A to Mix

A, the comparison of Mix V to Switch V, and the

comparison of Switch V to AV? V. The permutation

test found similarity while the shift test found difference

in comparisons of Pure V to Mix A, Pure V to AV? A,
and Switch A to Pure V, Switch A to Mix V, Switch A to

Repeat V, and Switch A to AV? V. Note that these

latter comparisons are all cross-modality comparisons,

which makes these results from the permutation test

difficult to interpret. We found the distribution shift

analysis to be an informative and robust measure of the
intrinsic characteristics of these RT distributions, but

chose to base our interpretations on the more

established comparison method. Mixing costs and

switching costs are two prevalent features of task

switching experiments, which we hypothesized would be

observable in the RT distribution statistics and would

subsequently affect race model results. We found a

significantly greater magnitude of these costs in

unisensory RTs relative to bisensory RTs. Compared to

pure RTs, repeat A RTs were slowed by a 7 ± 11 ms

(median ± MAD) mixing cost and V RTs were slowed

by a 14.8 ± 10 ms mixing cost. Additionally, compared

to repeat RTs, switch A RTs were slowed by a 27

± 31 ms switching cost and V RTs were slowed by a

24 ± 20 ms switching cost under respective switch

conditions. AV RTs were affected to a lesser degree.

AV RTs were slowed by a 4 ± 7 ms mixing cost and by

an additional 3 ± 5 ms switching cost under switch

conditions. A multiple comparisons permutation test was

used to detect significant differences between stimuli for

each cost type. Results in this section are Tmax

corrected p, Cohen’s d , and each test has 36 degrees

of freedom. The mixing cost test showed that the AV
mixing costs were significantly less than both A mixing

costs (t= �2.45 p= 0.049, d= 0.53) and V mixing

costs (t= �5.69, p= 0, d= �1.12). A mixing costs

were not significantly different than V mixing costs

(t= �1.72 p= 0.22, d= �0.32). Similarly, the AV
switching costs were significantly less than both A
switching costs (t= �5.45, p= 0, d= �1.24) and V
switching costs (t= �5.34, p= 0, d= �1.19). A
switching costs were significantly greater than V
switching costs (t= 2.58, p= 0.033, d= 0.40).

We would note that upon request of one of the

reviewers of this manuscript, all above analyses were

also performed on data where RTs were normalized at

the individual participant level. This transformation had

no impact on the results reported herein and is not

detailed further. The authors are happy to provide these



Fig. 3. RT distribution multiple comparisons tests. Pairwise multiple comparison tests of participant median RT distributions were conducted using a

permutation test with Tmax multiple comparisons correction. Results for this test are shown below the black unity line. Comparisons yielding a

corrected p< 0.05 are colored green. Comparisons yielding a corrected p> 0.05 are colored purple. Arrows indicate the group with the lowest

median RT. The distribution shift test divided compared distributions into quantile-based comparison points and tested for difference at each

quantile point. The results of this test are shown above the black unity line. Results for the shift test are quantified as the number of significantly

different quantiles. Shift test results demonstrating one or more statistically different quantile point values qualify distributions as morphologically

different and are colored red. Results demonstrating zero statistically different quantile point values qualify distributions as morphologically similar

and are colored blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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materials to any interested party under our data sharing

agreement (see below).
Race model findings

Fig. 4A illustrates race model comparisons to respective

AV CDFs for the pure, mix, repeat, and switch

conditions over 21 quantiles. All permutation tests in this

section were right tailed and conducted with 36 degrees

of freedom, using Tmax correction for multiple
comparisons. T values, corrected p values, original p

values, and Cohen’s d values for each comparison can

be found in Table 2. Despite consistent reports of race

model violation in healthy adult populations, we found

no statistical difference between the pure race model

and the pure AV CDF at any quantile. The mix group

comparison revealed seven significantly different

quantiles at the 10%,15%, 20%, 25%, 30%, 35%, and

45% points (all p= 0.0). The repeat group comparison

revealed five significantly different quantiles (10–25%



Fig. 4. Race model quantile comparisons and inequality analysis. (A) Race model functions were compared to AV CDFs for each experimental

group at 21 quantile points. Gray regions indicate significant quantiles of difference using Tmax corrected p< 0.05. Colored regions indicate 95%

confidence intervals (CI). (B) AV CDFs were subjected to multiple comparisons at each of the 21 quantile points. There were 6 possible

combinations of group comparisons. Shaded regions indicate at least one significantly different comparison (Tmax corrected p< 0.05). This analysis

was repeated for race model functions. (C) Race model violation (RMV) functions for each group were constructed by subtracting the AV CDF from

the race model at each quantile point. These are shown with bootstrapped 95% CIs. (D) Scatter plots of the positive area contained beneath each

participant’s RMV function for each group with mean area ± bootstrapped 95% CI. All group distributions were significantly different from one

another and significantly non-zero (Tmax corrected p< 0.05).
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p= 0.0, 30% p= 0.01). The switch group comparison

revealed eleven significantly different quantiles (10–55%

p= 0.0, 60% p= 0.04). Thus, whereas the race model

accurately approximated AV data from the pure

condition, there was clear and progressively greater

violation of the race model in the repeat, mix, and

switch conditions.

Fig. 4B illustrates the comparison of the RT CDFs for

AV stimuli across the different conditions and for the race

model, which is composed of the unisensory RTs, across

the different conditions. From this, it is evident that the AV

distributions change very little while the race model CDF

varies considerably as a function of context. Thus it is

the unisensory distributions, which feed the race model,
that account for these contextual effects. We then asked

whether the patterns of condition similarity and

dissimilarity in the RT distribution analyses were

apparent when race model functions were compared to

themselves and AV CDFs were compared to

themselves. Race model functions are composed from

unisensory RT statistics; therefore we would expect to

see differences between conditions in a similar fashion

to the distribution comparisons. By extension, we would

also expect to see less difference between the AV

condition CDFs. To quantify this, we performed a

quantile-wise multiple comparisons analysis on the race

models for each condition and the AV CDFs for each

condition, using two-tailed permutation tests with Tmax



Table 2. Comparisons of race models to AV CDFs

Pure Race v. Pure AV Mix Race v. Mix AV Repeat Race v. Repeat AV Switch Race v Switch AV

quantile t Pcorr Porig d t Pcorr Porig d t Pcorr Porig d t Pcorr Porig d

0% NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5% 0.28 0.50 0.39 0.05 1.36 0.41 0.09 0.26 0.29 0.50 0.39 0.06 2.20 0.08 0.02 0.46

10% 1.96 0.13 0.03 0.27 7.02 0.00 0.00 0.66 5.89 0.00 0.00 0.57 5.60 0.00 0.00 0.93

15% 0.60 0.50 0.28 0.08 9.30 0.00 0.00 0.81 5.14 0.00 0.00 0.51 9.93 0.00 0.00 1.46

20% �0.31 0.50 0.62 �0.04 9.32 0.00 0.00 0.88 5.08 0.00 0.00 0.59 10.93 0.00 0.00 1.60

25% �1.46 0.70 0.92 �0.18 7.31 0.00 0.00 0.86 3.99 0.00 0.00 0.59 9.82 0.00 0.00 1.57

30% �2.71 0.98 1.00 �0.36 6.18 0.00 0.00 0.80 3.17 0.01 0.00 0.51 9.00 0.00 0.00 1.50

35% �3.79 1.00 1.00 �0.60 5.00 0.00 0.00 0.74 2.17 0.11 0.02 0.38 7.41 0.00 0.00 1.37

40% �4.44 1.00 1.00 �0.79 3.63 0.00 0.00 0.57 0.81 0.50 0.23 0.15 6.36 0.00 0.00 1.19

45% �4.21 1.00 1.00 �0.83 2.21 0.09 0.01 0.34 �0.97 0.50 0.82 �0.15 5.52 0.00 0.00 1.00

50% �3.84 1.00 1.00 �0.80 1.20 0.45 0.12 0.17 �2.07 0.87 0.98 �0.34 4.67 0.00 0.00 0.83

55% �3.04 0.99 1.00 �0.65 0.20 0.50 0.42 0.03 �2.10 0.87 0.98 �0.37 3.77 0.00 0.00 0.70

60% �2.68 0.97 1.00 �0.58 �0.38 0.50 0.64 �0.07 �2.31 0.92 0.99 �0.46 2.49 0.04 0.01 0.49

65% �1.83 0.83 0.98 �0.41 �0.83 0.50 0.78 �0.17 �2.12 0.88 0.98 �0.46 1.90 0.18 0.03 0.40

70% �1.52 0.73 0.94 �0.35 �1.42 0.61 0.91 �0.31 �1.87 0.80 0.94 �0.41 0.81 0.50 0.22 0.18

75% �0.59 0.50 0.50 �0.14 �1.47 0.62 0.90 �0.33 �1.89 0.80 0.95 �0.42 0.67 0.50 0.26 0.15

80% 1.00 0.49 0.25 0.23 �1.58 0.66 0.93 �0.36 �1.29 0.56 0.75 �0.30 �0.45 0.50 0.63 �0.10

85% NaN NaN NaN NaN �1.48 0.63 0.88 �0.33 �1.00 0.50 0.50 �0.23 0.05 0.50 0.49 0.01

90% NaN NaN NaN NaN �0.78 0.50 0.50 �0.18 NaN NaN NaN NaN �0.25 0.50 0.50 �0.06

95% 1.43 0.31 0.00 0.00 1.76 0.23 0.00 0.41 NaN NaN NaN NaN 1.74 0.23 0.00 0.40

100% NaN NaN NaN NaN 3.40 0.00 0.00 0.00 NaN NaN NaN NaN 2.09 0.15 0.06 0.00

Race models compared to one another and AV CDFs compared to one another as seen in Fig. 3A. NaN indicates comparisons of distributions of equivalent values (i.e.,

entirely 0 at quantile 1 or entirely 1 in the final quantiles). Significant differences at the 100% quantile are ignored.
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correction at each quantile. There were 6 possible inter-

condition comparisons (pure vs. mix, pure vs. switch,

pure vs. repeat, mix vs. switch, etc). Fig. 4B illustrates

where at least one significantly different result was

obtained with regions of shaded background. As can be

seen, for both sets of comparisons, there are

statistically significant differences as a function of

condition. At the 5% quantile, there were 3 significantly

different comparisons for the AV CDFs (pure vs. mix,

pure vs. repeat, pure vs. switch) and also for the race

model tests (pure vs. mix, pure vs. repeat, pure vs.

switch). At 10%, all 6 inter-condition comparisons

yielded significant differences for both the AV CDFs and

the race model tests. At 15%, AV CDF comparisons

yielded 5 significant differences (pure/mix, pure/repeat,

pure/switch, mix/repeat, repeat/switch) and race model

comparisons yielded significant differences for all 6

combinations. At 20–30%, AV CDF comparisons yielded

4 significant differences (pure vs. mix, pure vs. switch,

mix vs. repeat, and repeat v. switch). All further

comparisons of AV CDFs were not significantly different.

On the other hand, all combinations of comparisons

between the race model groups were significantly

different from 20–50%. From 55–75%, all comparisons

except for pure vs. repeat were significantly different for

the race model comparisons. At 80%, race model pure

vs. mix, pure vs. switch, mix vs. repeat, and rep vs.

switch comparisons were significantly different. At 80%,

all but pure v. repeat were significantly different. At

85%, race model pure vs. mix, pure vs. switch, mix vs.

repeat, and repeat vs. switch were significantly different.

At the 95% quantile point, no significant differences

were found for all race model condition comparisons.
Finally, at the 100% quantile point, pure vs. mix and mix

vs. repeat comparisons revealed significant differences.

These differences had an effect size (Cohen’s d) of 0

and therefore are not shown in the figure.

The condition-wise differences found in comparisons

of race model and AV CDFs were further illustrated by

race model violation (RMV) functions shown in Fig. 4C.

The positive regions of these functions indicate regions

where the AV CDF is ‘‘faster” than the race model

prediction. The areas contained between these

positive regions and the x axis were quantified for

each condition and for each participant. The

distribution of participant area values for each

condition was tested for deviation from zero using a

one-sample permutation test and compared to all

other condition distributions with two-sample, two-tailed

permutation tests with multiple comparisons Tmax

correction. All groups of area values were significantly

different from one another (Pure vs. Mix t= 6.72,

p= 0, d= 1.32 | Pure vs. Repeat t= 4.10,

p= 0.0007, d= 0.84 | Pure vs. Switch t= 9.46,

p= 0, d= 2.00 | Mix vs. Repeat t= 2.81, p= 0.025,
d= 0.33 | Mix vs. Switch t= 8.53, p= 0, d= 1.10 |

Repeat vs. Switch t= 6.76, p= 0, d= 1.26) and

significantly non-zero (Pure t= 4.63, p= 0, d= 1.08

| Mix t= 8.83, p= 0, d= 2.05 | Repeat t= 6.67,

p= 0, d= 1.55 | Switch t= 10.57, p= 0, d= 2.46).

These results are illustrated in Fig. 4D. While it is the

case that the pure AV CDF and pure race model

were not significantly different from one another in the

quantile comparison test (Fig. 3C, D), the pure

condition violation area analysis does show a

significantly non-zero distribution.
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DISCUSSION

In a mixed design, reaction times in response to bisensory

stimuli are faster than responses to their constituent

unisensory stimuli, giving rise to the redundant signals

effect (RSE). One possible explanation of this finding is

provided by the race model, which posits that bisensory

RTs may be accounted for by simple statistically

facilitation, i.e. the increased likelihood of having a fast

RT. Under this account, no special multisensory

interactive processing occurs; rather, on any given

bisensory trial, the two inputs initiate independent

sensory-motor processes, which ‘‘race” in parallel to

initiate a response. However, ample evidence of

speeding beyond the linear predictions of the race

model has now been demonstrated, leading to a

generally widespread acceptance of the co-activation

model, which posits that multisensory integrative

processes give rise to the observed RT speeding. The

fact that RTs are often considerably faster than the

predictions of the race model suggests that additional

mechanisms must be at play. One plausible account for

this is that the anatomical convergence of unisensory

inputs on multisensory neurons leads to integration of

sensory signals in a non-linear fashion, which in turn

produce more effective sensory-motor processes,

thereby resulting in additional speeding. Here, we build

upon prior work (Gondan et al., 2004, 2007) that posits

yet a third account for these multisensory RT phenomena,

showing that much, if not all of the observed speeding can

be explained in terms of classic mixing and switching

costs that are more commonly associated with task-

switching designs. That is, we find that the need to switch

from performing this simple RT task in one sensory

modality to performing the same task in a second sensory

modality accounts for much of the bisensory ‘‘speeding”

effects seen in these paradigms. The data here suggest

that the main contributor to the observed RSE effects

actually result from task-switching induced slowing of
unisensory responses, rather than speeding of bisensory

responses, which remain remarkably stable within the

mixed block (i.e. AV RTs are wholly unaffected by what-

ever stimulus type preceded them).

It has long been appreciated that the order in which

stimuli are presented in mixed blocks of stimuli has a

tendency to slow RT behavior, and considerable

empirical work has shown that RTs become

systematically slower under both switching and mixing

conditions (Rogers and Monsell, 1995; Spence et al.,

2001; Wylie et al., 2003b; Gondan et al., 2004; Wylie

et al., 2009; Sandhu and Dyson, 2013). The data here

are strongly consistent with the presence of a mixing cost.

That is, we observed robust slowing of RTs when stimuli

were randomly presented in a mixed block compared to

repeated presentation during pure blocks, even for

responses to AV stimuli. Additionally, we showed that

RTs are significantly slowed under switch conditions

within the mixed block by comparing repeat and switch

RTs. The presence of these two phenomena suggests

that the brain treats the different stimulus modalities in

RSE versus pure designs differently, with additional pro-

cessing required to transition from one sensory modality
to another. Similar modality switching costs have been

demonstrated and described previously in RSE designs

(Gondan et al., 2004; Otto and Mamassian, 2012). Modal-

ity switching and mixing costs have also been demon-

strated in cued and un-cued task-switching paradigms

with sensory modality switching components (Rogers

and Monsell, 1995; Sohn and Carlson, 2000; Wylie

et al., 2009; Sandhu and Dyson, 2013).

It is worth re-emphasizing that bisensory RTs were not

significantly affected by switch costs. As such, apparent

multisensory speeding during mixed blocks appears to

be fully generated by the slowing of responses to

unisensory stimuli. When the causes of unisensory

slowing (i.e., mixing and switching), were removed in

the context of pure blocks, the race model provides a

sufficient approximation of multisensory response times.

It seems plausible that classical findings of multisensory

speeding in RSE designs can be attributed, at least in

part, to processes related to switching from one sensory

modality to another (Spence et al., 2001; Shomstein

and Yantis, 2004; Sandhu and Dyson, 2013). It is difficult

to say what mechanisms generate these switching

effects, but we are currently investigating the contribu-

tions of sensory attention, cross-sensory inhibition, and

sensory motor mapping states.

Our choice to use pure blocks was motivated by the

established use of repeated, ‘‘pure” task blocks in task

switching designs. While the use of pure blocks is a

common feature of task-switching designs, generating a

race model from stimuli taken from separate types of

blocks violates a well-established requirement for race

model analyses known as context invariance (Miller,

1982; Ashby and Townsend, 1986; Luce, 1986; Gondan

and Minakata, 2016). Race model analyses should

assume that the environment and circumstances under

which all data were collected were the same for all blocks

and that participants were not utilizing alternate strategies

that would invalidate race model comparisons. To put this

in probabilistic terms, any probability distributions you

wish to meaningfully compare must have the same priors.

In the case of pure blocks, each separate block type (A,
V, and AV) could be thought to generate different environ-

mental circumstances that could motivate different

response strategies, or isolate unique attentional circum-

stances or sets of sensory-motor mappings. To counter-

act the possibility of a participant adopting an overtly

alternate strategy such as closing their eyes during an

auditory block, for example, we monitored behavior in real

time using an infrared camera system and provided cor-

rective instruction when necessary. To our knowledge,

the visual system was still monitoring the environment

during the auditory pure blocks and vice versa. The overt

difference between these blocks can thus likely be limited

to attentional state. With this in mind, we note that it may

be the case that responses to longer strings of repeats,

i.e. V? V? V, in the mixed block will resemble pure

RTs. Further experiments measuring mixing costs using

multiple sequential repeat conditions will help to better

understand these dynamics. Secondly, this method of

grouping conditions in the mixed block (seen also in

(Gondan et al., 2004)) may be a better application of the
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race model test than former applications, which generally

assumed that participants, while responding to stimuli in a

mixed block, are in a uniformly multisensory attentional

state.

While our experiments suggest that cross-sensory

switching mechanisms account for the majority of race

model violation that we see here in neurotypical adults

(see Crosse et al, 2019 for an examination of the interplay

of these factors in children and in individuals with autism),

previous research shows that the relationship between

unisensory slowing (switching) and multisensory speed-

ing (coactivation) cannot be reduced to an either/or rela-

tionship, especially when stimuli become more complex

or less detectable. For example, a similar pure block

RSE analysis using auditory and visual stimuli (Otto and

Mamassian, 2012) demonstrated a significant violation

of the race model even when pure blocks of stimuli were

used. The authors used stimuli that were embedded in

noise, which may be a key difference between our exper-

iments. The difference in our findings suggests that coac-

tivation effects may become more apparent in more

complex environments where unisensory stimuli have

lower contrast from background. Although this experiment

is part of a small pool of research to date (Otto and

Mamassian, 2012) that takes switching and pure blocks

into account using a race model analysis, there is a sub-

stantial body of inverse effectiveness research that sup-

ports the suggestion that stimuli with lower intensity or

contrast can drive heightened multisensory neural

responses (Stein et al., 1988; Ross et al., 2007;

Senkowski et al., 2011; Crosse et al., 2016; Hong and

Shim, 2016). In support of the present findings, a previous

study that utilized a somewhat comparable pure block

design to study multisensory processing during continu-

ous (noise-free) audiovisual speech did not demonstrate

race model violation when analyzing RTs to specific

words (Crosse et al., 2015). However, in contrast to this

body of research, recent work has shown evidence for

coactivation in response to high intensity stimuli and not

low intensity stimuli (Minakata and Gondan, 2018). It is

likely the case that experimental context, stimulus

choices, and subtle task choices have a great effect on

the degree to which true multisensory speeding occurs.

Deeper investigations of stimulus features such as inten-

sity and contrast and their effects on cross-sensory pro-

cessing have been conducted in murine models (Meijer

et al., 2017) to suggest versatile feature-dependent activ-

ity modulation across separate primary sensory cortices.

Studies of the temporal window of integration

(Megevand et al., 2013) and even switch cost tuning as

a function of inter-stimulus interval (Rogers and Monsell,

1995) suggest additional parameters that can be manipu-

lated to better understand the relationship between puta-

tive coactivation effects and task-switching.

It is of significant interest to understand how an

updated task-switching account of race model violation

may contribute to developmental and clinical

populations, from which a great deal of RSE data have

been collected. Younger children do not show reliable

multisensory speeding in classic RSE experiments, but

evidence of speeding begins to emerge in later
childhood, at about the age of 10 (Brandwein et al.,

2011, 2013; Crosse et al., 2019). This has been inter-

preted as evidence that multisensory integration pro-

cesses have an extended developmental trajectory.

Emergence of classic AV race model violation occurs

even later in a number of clinical populations, such as

those on the Autism Spectrum (Brandwein et al., 2013).

Further work to translate these findings from the develop-

ment of multisensory integration to multisensory atten-

tional flexibility is in order (Reed and McCarthy, 2012;

Crosse et al., 2019).
Study limitations

One of the contentions in this paper is that no switching

cost is observed in cases where a unisensory input is

followed by the bisensory AV input, since the AV

stimulus always contains the previously experienced

input and so no switch of sensory modality is necessary.

In the current study, the auditory and visual stimuli were of

similar salience, and it is possible that this was a factor in

the lack of switch costs we observed. That is, if one of the

unisensory inputs were substantially more salient than the

other, it remains possible that switch costs might emerge

to AV inputs when the preceding input was the less salient

one. This possibility will need to be tested in future work.

It has also been shown in prior work that the

magnitude of the RSE can be affected by changes in

the synchrony between the auditory and visual

constituents of a bisensory input, especially when the

salience of one of the unisensory inputs is substantially

different to the other (Hershenson, 1962; Miller, 1986).

We did not manipulate AV stimulus asynchrony here to

maximize the RSE at the individual participant level, and

it remains possible that evidence for co-activation might

emerge under such circumstances. We would note, how-

ever, that in a prior study where we manipulated AV syn-

chrony systematically using a near-identical stimulus

setup to the one used in the current study (Megevand

et al., 2013), the fastest responses to AV stimuli were

observed when the audio and visual constituents of the

bisensory input were presented simultaneously.

RSE designs have long been utilized to ask questions

related to the nature and mechanisms of multisensory

integration. Our analyses recast RSE designs into the

realm of task-switching and provides evidence for

putative attentional states that may drive the switching

effects seen during alternation of responses to

unisensory stimuli and the lack of switching effects

found in response to bisensory stimuli. The analysis of

pure block RTs demonstrates that, when taken out of

the unpredictable context of a mixed block, responses

to unisensory stimuli can be used to accurately

approximate responses to bisensory stimuli. A great

deal of work needs to be done to clarify the

mechanisms that govern switching attention and

spreading attention across modalities. Manipulations to

stimulus intensity, contrast, complexity, predictability,

and sensory modality could modulate cross-sensory

attentional states and thus affect the resilience of

multisensory stimuli to switch costs and to true MSI.
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